

.NET Framework Solutions—In Search of the
Lost Win32 API
John Paul Mueller

Associate Publisher
Joel Fuggazzotto

Acquisitions and Developmental Editor
Denise Santoro Lincoln

Editors
Judy Flynn
William Rodarmor

Production Editor
Kylie Johnston

Technical Editor
Ross Russell Mullen

Graphic Illustrator
Jeff Wilson
Happenstance Type-O-Rama

Electronic Publishing Specialists
Jill Niles
Judy Fung
Scott Benoit

Proofreaders
Laurie O’Connell
Dave Nash
Nancy Riddiough
Monique van den Berg

Indexer
Lynnzee Elze

CD Coordinator
Dan Mummert

CD Technician
Kevin Ly

Cover Designer
Caryl Gorska/Gorska Design

Cover Photographers
Peter Samuels

Tony Stone

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights
reserved. The author(s) created reusable code in this publication expressly for reuse by readers.
Sybex grants readers limited permission to reuse the code found in this publication or its
accompanying CD-ROM so long as (author(s)) are attributed in any application containing the
reusable code and the code itself is never distributed, posted online by electronic transmission, sold,
or commercially exploited as a stand-alone product. Aside from this specific exception concerning
reusable code, no part of this publication may be stored in a retrieval system, transmitted, or
reproduced in any way, including but not limited to photocopy, photograph, magnetic, or other
record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2002108076

ISBN: 0-7821-4134-X

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the
United States and/or other countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated. All
rights reserved. FullShot is a trademark of Inbit Incorporated.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997-1999
Macromedia Inc. For more information on Macromedia and Macromedia Director, visit
http://www.macromedia.com/ .

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks
from descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based
upon final release software whenever possible. Portions of the manuscript may be based upon pre-
release versions supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or accuracy of the contents
herein and accept no liability of any kind including but not limited to performance, merchantability,
fitness for any particular purpose, or any losses or damages of any kind caused or alleged to be
caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that are available now or in the
future contain programs and/or text files (the “Software”) to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject to the terms that follow. Your
purchase, acceptance, or use of the Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless otherwise indicated and is protected by
copyright to SYBEX or other copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a single-user license to use the Software for your personal, noncommercial
use only. You may not reproduce, sell, distribute, publish, circulate, or commercially exploit the
Software, or any portion thereof, without the written consent of SYBEX and the specific copyright
owner(s) of any component software included on this media.

In the event that the Software or components include specific license requirements or end-user
agreements, statements of condition, disclaimers, limitations or warranties (“End-User License”),
those End-User Licenses supersede the terms and conditions herein as to that particular Software
component. Your purchase, acceptance, or use of the Software will constitute your acceptance of
such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all export laws and
regulations of the United States as such laws and regulations may exist from time to time.

Reusable Code in This Book

The authors created reusable code in this publication expressly for reuse for readers. Sybex grants
readers permission to reuse for any purpose the code found in this publication or its accompanying
CD-ROM so long as all of the authors are attributed in any application containing the reusable code,
and the code itself is never sold or commercially exploited as a stand-alone product.

Notice

The Graphic Workshop and GIF Construction Set software included with this publication is provided
as shareware for your evaluation. If you try this software and find it useful, you are requested to
register it as discussed in its documentation and in the applications’ “About” screen. SYBEX has not
paid the registration fee for this shareware.

Software Support

Components of the supplemental Software and any offers associated with them may be supported by
the specific Owner(s) of that material, but they are not supported by SYBEX. Information regarding
any available support may be obtained from the Owner(s) using the information provided in the
appropriate read.me files or listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor any offer,
SYBEX bears no responsibility. This notice concerning support for the Software is provided for your
information only. SYBEX is not the agent or principal of the Owner(s), and SYBEX is in no way
responsible for providing any support for the Software, nor is it liable or responsible for any support
provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical defects for a period of ninety (90) days
after purchase. The Software is not available from SYBEX in any other form or media than that
enclosed herein or posted to http://www.sybex.com/. If you discover a defect in the media during this
warranty period, you may obtain a replacement of identical format at no charge by sending the
defective media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web: http://www.sybex.com/

After the 90-day period, you can obtain replacement media of identical format by sending us the
defective disk, proof of purchase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or implied, with respect to the
Software or its contents, quality, performance, merchantability, or fitness for a particular purpose. In
no event will SYBEX, its distributors, or dealers be liable to you or any other party for direct,
indirect, special, incidental, consequential, or other damages arising out of the use of or inability to
use the Software or its contents even if advised of the possibility of such damage. In the event that
the Software includes an online update feature, SYBEX further disclaims any obligation to provide
this feature for any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states. Therefore, the above exclusion
may not apply to you. This warranty provides you with specific legal rights; there may be other
rights that you may have that vary from state to state. The pricing of the book with the Software by
SYBEX reflects the allocation of risk and limitations on liability contained in this agreement of
Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distributed as shareware. Copyright laws apply
to both shareware and ordinary commercial software, and the copyright Owner(s) retains all rights. If
you try a shareware program and continue using it, you are expected to register it. Individual
programs differ on details of trial periods, registration, and payment. Please observe the requirements
stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-protected or encrypted. However, in all
cases, reselling or redistributing these files without authorization is expressly forbidden except as
specifically provided for by the Owner(s) therein.

This book is dedicated to my loving wife—
 she is my first, best friend.

Acknowledgments

Thanks to my wife, Rebecca, for working with me to get this book completed during an
exceptionally difficult time. I really don’t know what I would have done without her help in
researching and compiling some of the information that appears in this book (especially the
glossary). She also did a fine job of proofreading my rough draft and page-proofing the final result.

Russ Mullen deserves thanks for his technical edit of this book. He greatly added to the accuracy and
depth of the material you see here. I really appreciated the time he devoted to checking my code for
accuracy—especially the last minute checks of test utilities. Russ also supplied some of the URLs
you see in the book and other helpful tips and hints.

Matt Wagner, my agent, deserves credit for helping me get the contract in the first place and taking
care of all the details that most authors don’t really consider. I always appreciate his help. It’s good
to know that someone wants to help.

Finally, I would like to thank Denise Santoro Lincoln, Kylie Johnston, Judy Flynn, Dan Mummert,
Kevin Ly, Lynnzee Elze, William Rodarmor, and the rest of the production staff at Sybex for their
assistance in bringing this book to print. It’s always nice to work with such a great group of

professionals.

About the Author

John Mueller is a freelance author and technical editor. He has writing in his blood, having produced
55 books and over 200 articles to date. The topics range from networking to artificial intelligence
and from database management to heads-down programming. Some of his current books include a
C# developer guide, a small business and home office networking guide, and several Windows XP
user guides. His technical editing skills have helped over 29 authors refine the content of their
manuscripts. John has provided technical editing services to both Data Based Advisor and Coast
Compute magazines. He’s also contributed articles to magazines like SQL Server Professional ,
Visual C++ Developer, and Visual Basic Developer. He’s currently the editor of the .NET electronic
newsletter for Pinnacle Publishing.

When John isn’t working at the computer, you can find him in his workshop. He’s an avid
woodworker and candle maker. On any given afternoon, you can find him working at a lathe or
putting the finishing touches on a bookcase. One of his newest craft projects is glycerin soap making,
which comes in handy for gift baskets. You can reach John on the Internet at JMueller@mwt.net.
John is also setting up a Web site at http://www.mwt.net/~jmueller/. Feel free to look and make
suggestions on how he can improve it. One of his current projects is creating book FAQ sheets that
should help you find the book information you need much faster.

Table of Contents
Introduction...1

Overview..1
Hunting for Treasure...1
Hidden Nuggets..1

Who Should Read This Book?...2
Tools Required...2
Conventions Used in This Book..2
Icons...3

Part I: An Overview of the Win32 API...5

Chapter 1: Overcoming Holes in the .NET Framework...6
Overview..6
Why Access the Win32 API?..6

A Case of Missing Functionality..7
Win32 Function Types..8
Win32 Access Requirements..11

Win32 Access for C# Developers..14
Understanding the Effects of Unsafe Code...14
Understanding the Effects of Pointers..15
Advantages for the C# Developer...16

Win32 Access for Visual Basic Developers..16
Understanding Visual Basic Limitations..17
Advantages for the Visual Basic Developer...18

Where Do You Go from Here?..18

Chapter 2: Working with Win32 API Data..19
Overview..19
A Short View of Data..19
Working with Variables...24

Converting Variables to C# Types..25
Converting Variables to Visual Basic Types..25
Special Rules for COM...26

Working with Data Structures...28
Working with Pointers...32
Working with Enumerations..32
Importing Resources..33

Understanding .NET Framework Functionality...33
Using the IDE Features...34
Working with the Win32 API...35

Where Do You Go from Here?..36

Chapter 3: Accessing the Win32 API..37
Overview..37
An Overview of the DLLs...37
Types of Win32 Access...38

Direct DLL Access...39
C LIB Access..40

A Direct DLL Access Example...42
A C LIB Wrappers Access Example...43

i

Table of Contents
Chapter 3: Accessing the Win32 API

A C LIB Substitute Functions Example..49
Interpreting Error and Result Values...51
Helpful Win32 Programming Tools..52

Dependency Walker..53
Error Lookup...59
Spy++..60

Where Do You Go from Here?..64

Chapter 4: Processing Windows Messages...65
Overview..65
Understanding the Windows Message Types..65
Windows Message Handlers Found in the .NET Framework...68
An Overview of Windows Message Functions...70

SendMessage()..70
PostMessage(), PostThreadMessage, and PostQuitMessage()...72
SendNotifyMessage()...77
SendMessageCallback()..78
GetMessage() and PeekMessage()..78
RegisterWindowMessage()...79

Creating a Windows Message Handler Example...79
Creating the Event..79
Creating the Windows Message Loop Override...80
Creating the Event Handler...81
Demonstrating the Windows Message Handler..82
Developing for Thread Safety...83

Where Do You Go from Here?..84

Chapter 5: Using Callback Functions...85
Overview..85
What Is a Callback Function?..85
Using Callback Functions..86

An Overview of Callback Function Prototypes..86
Implementing a Callback from the Managed Environment..87
Implementing a Callback from a Wrapper DLL...91

Enumerating Calendar Information Example..95
Creating the Macro Wrapper DLL..96
Creating the EnumCalendarInfoEx() Function Code...98
Demonstrating the Calendar Enumeration..99

Where Do You Go from Here?..101

Part II: Fixing Holes in Standard Applications...102

Chapter 6: Gaining Support for the Console Application..103
Overview..103
What Does the .NET Framework Provide?...103
Clearing the Screen Example...104
Getting Console Information Examples...107

Working with Code Pages..107
Gaining Access to Console Mode Information...109

ii

Table of Contents
Chapter 6: Gaining Support for the Console Application

Working with Processes..113
Changing the Environment Examples...114

Accessing the Environmental Strings...115
Using Cursors and Fonts...118
Determining the Console Window Title...122
Manipulating the Console Screen Buffer..123

Where Do You Go from Here?..126

Chapter 7: Accessing the Hardware Directly...128
Overview..128
When is Direct Access Required?..128
Serial Port Access Examples...130

Creating a Serial Stream...130
Determining the Port Status..136

Parallel Port Access Examples...143
Creating the Wrapper DLL...144
Viewing the First Level of Printer Information..146
Viewing the Second Level of Printer Information..148

Where Do You Go from Here?..152

Chapter 8: Overcoming Security Issues...154
Overview..154
An Overview of Windows Security...154

A Detailed View of the Windows Security API...155
An Overview of the Functions..161

Using the Access Control Editor..165
Using the Security Configuration Editor...167
Understanding How .NET Role−Based Security Differs..169
Looking Up an Account SID Example..172
Using the GetFileSecurity() Function Example...175
Working with ACEs Example...178
Where Do You Go from Here?..183

Part III: Fixing Advanced Win32 API Problems...185

Chapter 9: Accessing Windows XP Special Features..186
Overview..186
What’s New in Windows XP?...186

Common Features...187
Professional Edition Exclusive Features...188

Determining the Operating System Version Example...189
Working with Theme Support Example..195
Balloon Help Example...202
Using NUnit for Automated Testing..207
Where Do You Go from Here?..210

Chapter 10: Using Operating System Special Functions..211
Overview..211
Accessing Status and Other Information...211

iii

Table of Contents
Chapter 10: Using Operating System Special Functions

Learning How to Avoid Version Compatibility Problems...213
Determining System Power Status Example..215

Creating an Application Shortcut Example...219
Shutting the System Down Remotely Example...222
Obtaining Device Capabilities Example..225
File Compression...227
Using PC−Lint for C++ Development...228
Where Do You Go from Here?..230

Chapter 11: Accessing the Media Player..232
Overview..232
A Quick Overview of the Media Player..232

Windows Media Player General Operation..233
Internet Content..234
Using the Media Library...235

Displaying a Configuration Dialog Example...236
Playing Sound Files Example..240

Determining Device Capabilities..241
Opening a File...244
Playing a File..251
Pausing and Stopping a File..253
Required Application Cleanup..254

Using IconForge...254
Where Do You Go from Here?..257

Chapter 12: Working with Microsoft Management Console...258
Overview..258
Using GUIDGen..258
The Case for an MMC Snap−In...260
Creating a Wrapper DLL...262

Creating an Interface...263
Writing the MMC Wrapper DLL..266

Developing the MMC Snap−In Example..277
Developing an About Dialog..277
Working with IDataObject..279
Creating IComponent and IComponentData..282
Testing the Snap−In within MMC..284

Where Do You Go from Here?..286

Part IV: Working with DirectX...288

Chapter 13: Creating DirectX Structures and Data Elements...289
Overview..289
Using the DXDIAG Utility..289

Learning about DirectX Compatibility...290
Viewing the Drivers..292

Working with the DirectX Structures..294
An Overview of the Data Structures...294
Structure Conversion Essentials...297

iv

Table of Contents
Chapter 13: Creating DirectX Structures and Data Elements

Understanding DirectX Data Pitfalls in the Managed Environment...303
Where Do You Go from Here?..305

Chapter 14: Developing DirectX Access Routines...307
Overview..307
Working with DirectX Functions...307

DirectDrawCreate() and DirectDrawCreateEx()..308
DirectDrawCreateClipper()..309
DirectDrawEnumerate() and DirectDrawEnumerateEx()..310
Function Declarations...310
Function Return Values..312

Creating DirectX Callback Function Prototypes...315
DDEnumCallback() and DDEnumCallbackEx()..315
EnumModesCallback() and EnumModesCallback2()..315
EnumSurfacesCallback(), EnumSurfacesCallback2(), and EnumSurfacesCallback7().........316
EnumVideoCallback()..316
Delegate Declarations...316

Working with the DirectX Interfaces and Classes...317
Learning the DirectX Capabilities of the Host Machine Example..318

Using the DirectDrawEnumerateEx() Function...318
Using the DirectX Caps Viewer Tool...320

A Simple 2D DirectDraw Example...324
Importing the DirectX COM Library..324
Writing the Code...325

Using the GIF Construction Set...329
Using the GIF Construction Set...333
Where Do You Go from Here?..336

Chapter 15: Creating Applications with DirectX 8.1..337
Overview..337
An Overview of DirectX 7 and DirectX 8.1 Differences..337

Consolidated Objects..337
Updated Objects and Features..338
An Overview of the Tools..340

Using the DirectX Control Panel Application...340
Using the DMO Test Utility ..344

Creating a Test File Using GraphEdit...344
Testing the WavesReverb DMO...346

A Simple DirectSound Example..348
Using the Force Feedback Editor...350
A Simple DirectInput Example..354
Using the DirectX Texture Tool..357
Where Do You Go from Here?..359

Chapter 16: Extended DirectX Programming Examples..360
Overview..360
Using the GraphEdit Utility...360

Creating a Connection..360
Working with Multiple Streams...361

v

Table of Contents
Chapter 16: Extended DirectX Programming Examples

Working with Filters...363
Performance Tuning...365
Saving the Result..366

Using the DirectPlay Network Simulator..367
Using the MeshView Tool...369

Creating a Mesh..369
Adding Color..370
Making Other Changes...373

Using a Mesh Example..376
Initializing the Application...376
Loading a Mesh File...377
Displaying the Image On Screen..380
A Few Words about Output..383

Where Do You Go from Here?..385

Part V: Appendices...387

Appendix A: Fifty−Two Tips for Error−Free Win32 API Access...388

Appendix B: Fixes for Common API Access Errors...393
Resolving Data Corruption in Data Structures..393
The [DllImport] Attribute Works Improperly..394
Data Transfer Problems...394
.NET Implementation of COM Interface Doesn’t Work...396
Handling Memory Leaks and Other Resource Problems..396
Windows Doesn’t Appear to Handle Messages Correctly..397

vi

Glossary...399

B...399
C..400
D..401
E...402
F...403
G..404
H..404
I..405
L..405
M...406
N..407
P...408
R..409
S...409
T..410
U...411
V...412
W..413

Table of Contents
List of Figures..415

Chapter 1: Overcoming Holes in the .NET Framework..415
Chapter 2: Working with Win32 API Data..415
Chapter 3: Accessing the Win32 API..415
Chapter 4: Processing Windows Messages..415
Chapter 5: Using Callback Functions..416
Chapter 6: Gaining Support for the Console Application..416
Chapter 7: Accessing the Hardware Directly...416
Chapter 8: Overcoming Security Issues...416
Chapter 9: Accessing Windows XP Special Features..417
Chapter 10: Using Operating System Special Functions...417
Chapter 11: Accessing the Media Player...417
Chapter 12: Working with Microsoft Management Console...418
Chapter 13: Creating DirectX Structures and Data Elements..418
Chapter 14: Developing DirectX Access Routines..418
Chapter 15: Creating Applications with DirectX 8.1...418
Chapter 16: Extended DirectX Programming Examples...419

List of Sidebars..420
Chapter 2: Working with Win32 API Data..420
Chapter 3: Accessing the Win32 API..420
Chapter 8: Overcoming Security Issues...420
Chapter 10: Using Operating System Special Functions...420
Chapter 13: Creating DirectX Structures and Data Elements..420
Chapter 15: Creating Applications with DirectX 8.1...420

List of Tables...421
Chapter 4: Processing Windows Messages..421
Chapter 8: Overcoming Security Issues...421

List of Listings...422
Chapter 1: Overcoming Holes in the .NET Framework..422
Chapter 2: Working with Win32 API Data..422
Chapter 3: Accessing the Win32 API..422
Chapter 4: Processing Windows Messages..422
Chapter 5: Using Callback Functions..422
Chapter 6: Gaining Support for the Console Application..422
Chapter 7: Accessing the Hardware Directly...423
Chapter 8: Overcoming Security Issues...423
Chapter 9: Accessing Windows XP Special Features..423
Chapter 10: Using Operating System Special Functions...423
Chapter 11: Accessing the Media Player...423
Chapter 12: Working with Microsoft Management Console...424
Chapter 13: Creating DirectX Structures and Data Elements..424
Chapter 14: Developing DirectX Access Routines..424
Chapter 15: Creating Applications with DirectX 8.1...424
Chapter 16: Extended DirectX Programming Examples...424

vii

Introduction

Overview

Hey! I needed that!

You might be tempted to yell something like this when you discover that Microsoft has implemented some,
but not all, of the Win32 API in the .NET Framework. In some cases, you might find that Microsoft mislaid
the feature in an out−of−the−way spot, but more often than not, the feature is simply missing. It’s not
documented anywhere and Microsoft doesn’t give you even one clue as to where the feature might have gone.
A visit to the newsgroups will often yield a pathetic claim that the missing feature will appear in the next
version of the .NET Framework—so much for developing your application today.

The good news is that there are ways around your problem. In fact, sometimes the method for overcoming the
loss of a feature is so simple you have to wonder why Microsoft didn’t implement it (or at least document it).
In other situations, the road to your missing Win32 function lies along a twisted path strewn with the boulders
of incompatibility. This book helps you in both cases. We explore both the easy and the hard fixes. In fact, by
the time you complete this book, you’ll have discovered that the .NET Framework simply hides much of the
functionality that you thought it offered as an open feature.

Hunting for Treasure

In some respects, this book is about the adventure of programming in the .NET Framework. Like any
adventure, you need a map to find the treasure at the end, and this book is your map. You’ll discover all of the
functionality that other developers only dream about listed right in this map, and not only that, the road is
marked for easy recovery. I’ll also show you all of the hidden traps and how to avoid them. We’ll discuss the
problems of implementing an application solution that relies on the Win32 API and how you can easily
achieve success.

We’ll begin simply by looking at the tools you need to go on your adventure. You’ll learn about messaging
and using callback functions. Together we’ll explore the depths of the data structure. In many places, you’ll
learn about the secret code words required to open the doors of files filled with treasure. For many of you, the
path will begin to look familiar. But watch out! Working with the Win32 API from .NET is nothing like
working with it from the languages of days gone by.

Once you’re an accomplished adventurer, we’ll begin delving into the new features found in Windows XP.
You’ll begin to understand that you don’t have to implement security Microsoft’s way and that the hardware
really hasn’t disappeared after all. Adventurers with a thirst for the most exotic treasures will discover the
media player, MMC snap−ins, and even DirectX. By the time the journey ends, you’ll find that every dream
of Windows functionality treasure you might have wanted is answered. In sum, this is the one true map for all
.NET developers who need the Win32 API in all of its forms.

Hidden Nuggets

This book is also about finding the hidden nuggets that all adventurers seek. In many of the chapters, you’ll
learn about tools that you might not have known about and will almost certainly learn new ways to use them.
We’ll also discuss how to create tools of your own. Finally, you’ll receive two special DLLs that will help you
overcome the problems of Win32 API access. The first DLL helps you create MMC snap−ins with less effort.
The second DLL does the same for DirectX.

1

Who Should Read This Book?

I’ve designed this book for Visual Basic .NET and Visual C# .NET developers who need access to the Win32
API. Given the current state of the .NET Framework, I’m betting that most .NET developers will need some
type of access to the Win32 API, and this book explores the issue at all levels. All of the examples contain full
explanations, and for each, you’ll find both the source and the compiled example on the CD that accompanies
this book.

You won’t find any information on using the language of your choice in this book—I concentrate on the
Win32 API and what you need to work with it. Consequently, you won’t want to look at this book until
you’ve already learned to use either Visual Basic or Visual C#. We’ll begin working with the Win32 API in
the examples that appear in the first chapter and you won’t stop until you reach the end of the book. Every
chapter has at least one detailed example, and most contain several. You’ll also find supplementary examples
in the \Extras folder of the CD.

Tools Required

There are some assumptions that I’ve made while writing the application programming examples in this book.
While writing this book, I used a Windows 2000 and Windows XP workstation. There’s no guarantee that any
of the code in the book will work with Windows 9x, although most of it will. You must install the latest
service packs for all products before the examples will work properly. Microsoft’s .NET product line is new
technology and relies on the latest versions of many DLLs and the .NET Framework. In some cases, I’ll list
other special requirements that you must observe before the example application will run.

Note Most of the concepts you’ll learn in this book won’t appear in your online documentation. Some of it’s
so new that it only appears on selected Web sites. Throughout the book you’ll find tips and notes
alerting you to the location of such information. In addition, Microsoft made some material available
only through selected channels like an MSDN subscription. Other pieces of information are simply
undocumented, and you won’t find them anywhere except within a newsgroup when someone finds the
feature accidentally. In a few cases, I’ll tell you outright that I learned about the feature through trial and
error—the type of research you won’t have to perform when using this book.

I tested all of the examples in this book with Visual Studio .NET Enterprise Architect Edition. None of these
examples are guaranteed to work with any other programming language products and none of them will work
with the educational versions of Visual Studio.

Conventions Used in This Book

It always helps to know what the special text means in a book. In this section we’ll cover usage conventions.
This book uses the following conventions:

Convention Explanation

Inline Code Some code will appear in the text of the book to help explain
application functionality. The code appears in a special font that
makes it easy to see it. This monospaced font also makes the code
easier to read.

Inline Variable

Who Should Read This Book?

2

As with source code, variables that appear inline will also appear in a
special font that makes them stand out from the rest of the text. When
you see monospaced text in an italic typeface, you can be sure it’s a
variable of some type.

User Input Sometimes I’ll ask you to type something. For example, you might
need to type a particular value into the field of a dialog box. This
special font helps you see what you need to type.

[Filename] When you see square brackets around a value, switch, or command, it
means that this is an optional component. You don’t have to include
it as part of the command line or dialog field unless you want the
additional functionality that the value, switch, or command provides.

Filename A variable name is a value that you need to replace with something
else. For example, you might need to provide the name of your server
as part of a command−line argument. Because I don’t know the name
of your server, I’ll provide a variable name instead. The variable
name you’ll see usually provides a clue as to what kind of
information you need to supply. In this case, you’ll need to provide a
filename.

File Ø Open Menus and the selections on them appear with a special menu arrow
symbol. “File Ø Open” means “Access the File menu and choose
Open.”

italic You’ll normally see words in italic if they have special meaning or if
this is the first use of the term and it is accompanied by a definition.
Always pay special attention to words in italic because they’re unique
in some way.

monospace Some words appear in a monospace font because they’re easier to see
or require emphasis of some type. For example, all filenames in the
book appear in a monospace font to make them easier to read.

URLs URLs will normally appear in a monospace font so that you can see
them with greater ease. The URLs in this book provide sources of
additional information designed to make your development
experience better. URLs often provide sources of interesting
information as well.

Icons

This book contains many icons that help you identify certain types of information. The following paragraphs
describe the purpose of each icon.

Note Notes tell you about interesting facts that don’t necessarily affect your ability to use the other
information in the book. I use note boxes to give you bits of information that I’ve picked up while using
C#, Windows 9x, Windows 2000, or Windows XP.

Tip Everyone likes tips because they tell you ways of doing things that you might not have thought
about before. Tip boxes might also provide an alternative way of doing something; often you
might like the alternative better than the first approach I provided.

You’ll also find that I use notes and tips to hold amplifying information. For example, many of the URLs in
this book appear as part of a note or a tip. The Internet contains a wealth of information, but finding it can be
difficult, to say the least. URLs within notes and tips help you find new sources of information on the Internet,

Icons

3

information that you can use to improve your programming or learn new techniques. You’ll also find
newsgroup URLs that tell where you can find other people to talk with about C#. Finally, URLs will help you
find utility programs that’ll make programming faster and easier than before.

Warning The warning icon means “Watch out!” Warnings almost always tell you about some kind of
system or data damage that’ll occur if you perform a certain action (or fail to perform
others). Make sure you understand a warning thoroughly before you follow any instructions
that come after it.

Icons

4

Part I: An Overview of the Win32 API
Chapter 1: Overcoming Holes in the .NET Framework
Chapter 2: Working with Win32 API Data
Chapter 3: Accessing the Win32 API
Chapter 4: Processing Windows Messages
Chapter 5: Using Callback

5

Chapter 1: Overcoming Holes in the .NET Framework

Overview

There are few, if any, perfect programming platforms in the world and .NET is no exception. Developers who
spend any time working in the unmanaged environment before they begin working with .NET will notice
some distinct problems with functionality in the .NET environment. Some of these holes (such as those in the
security area) are apparent and require an immediate fix; others (such as the lack of support for a Beep()
function) are subtle and you might never notice them. The point is that the.NET Framework is new
technology and there are bound to be some holes in coverage, and you’ll notice them with regular frequency.

This chapter provides a quick overview of some major areas of omission in the .NET Framework. I want to
say at the outset that I feel the .NET Framework is a big improvement over using unmanaged code, but it’s
new and lacks some features that most developers will need. Consequently, you’ll find that this book
discusses “holes” in coverage or augmentation of features. I’m not here to tell you that the .NET Framework
is technically flawed. The goal of this chapter is to help you plan your development efforts to make the best
use of existing .NET Framework functionality and to access the Win32 API when the .NET Framework
proves less than perfect.

Note Visual C++ represents a unique language in .NET because it provides both managed and unmanaged
coding environments. Consequently, you can access the Win32 API in its entirety from Visual C++
using the same unmanaged techniques you used before .NET appeared on the horizon. This unique
functionality means that Visual C++ developers won’t need the special techniques found in this book. It
also means that you can use Visual C++ as a language bridge between managed and unmanaged
environments.

Why Access the Win32 API?

Many of you have a lot of experience working with the Win32 API are already familiar with the programming
requirements for unmanaged code. The idea of working with unmanaged code presents few problems for the
seasoned developer. However, the .NET Framework that Microsoft has advertised is supposed to obviate the
need to work with unmanaged code, so the first question on most developer’s minds is: why they would even
need to access the Win32 API? The short answer is that you’ll find a lack of functionality in some areas such
as DirectX, the Microsoft Management Console (MMC), and direct hardware access when working with the
.NET Framework. You can only gain access to this functionality through the Win32 API.

The long answer requires a little more explanation. For example, not all .NET languages have an equal
measure of missing functionality. The .NET Framework doesn’t include a Beep() function, so you’ll find this
feature missing in C# as well. However, because Visual Basic includes a Beep() function as part of the
language, it doesn’t require any special programming to access this Win32 API feature. In sum, the question
of missing functionality is a matter of determining if the language you’re using provides the feature and then
determining the best method to access the feature if it is missing.

You’ll find that the question of Win32 API access becomes more complex as you move from simple functions
such as Beep() to major programming projects such as creating an MMC Snap−in. The level of Win32 API
access varies by language, which is why this book addresses C# and Visual Basic. You’ll find that some
chapters, including this one, contain separate C# and Visual Basic sections because the two languages provide
varying levels of Win32 API access. Consequently, the third issue in Win32 API access is whether the target

6

language provides support for the required feature. It might not, which means you’ll need to create wrappers
for the missing functionality.

Now that you have a basic overview of the question of why you’d want to access the Win32 API, let’s discuss
the issues in more detail. The following sections describe needs and requirements for Win32 API access in a
generic manner. You can apply this material equally to any language you might want to use with .NET.

A Case of Missing Functionality

As previously mentioned, the .NET Framework lacks functionality for some basic calls such as Beep(). This
means that a C# developer who needs to create a sound within an application has to find some other means to
do it. There’s no doubt that the functionality is missing, but the technique used to create the desired
functionality varies by language capability, environment, and flexibility. For example, when working with
Visual Basic, you already have access to a basic Beep() function, so no additional coding is required if you
require a simple beep. However, as shown in Listing 1.1, there are actually four ways to create a beep in C#
and not all of them provide the same features. (You’ll find the source code for this example in the \Chapter
01\C#\MakeSound folder of the CD; a Visual Basic version appears in the \Chapter 01\VB\MakeSound
folder.)

Listing 1.1: Creating a Beep in C#

// Import the Windows Beep() API function.
[DllImport("kernel32.dll")]
private static extern bool Beep(int freq, int dur);

// Define some constants for using the PlaySound() function.
public const int SND_FILENAME = 0x00020000;
public const int SND_ASYNC = 0x0001;

// Import the Windows PlaySound() function.
[DllImport("winmm.dll")]
public static extern bool PlaySound(string pszSound,
 int hmod,
 int fdwSound);

[STAThread]
static void Main(string[] args)
{
 // Create a sound using an escape character.
 Console.Write("\a");
 Console.WriteLine("Press Any Key When Ready...");
 Console.ReadLine();

 // Create a sound using a Windows API call.
 Beep(800, 200);
 Console.WriteLine("Press Any Key When Ready...");
 Console.ReadLine();

 // Create a sound using a Visual Basic call.
 Microsoft.VisualBasic.Interaction.Beep();
 Console.WriteLine("Press Any Key When Ready...");
 Console.ReadLine();

 // Create a sound using a WAV file.
 PlaySound("BELLS.WAV",
 0,
 SND_FILENAME | SND_ASYNC);

A Case of Missing Functionality

7

 Console.WriteLine("Press Any Key When Ready...");
 Console.ReadLine();
}

It’s important to note that using an escape character to produce a sound only works for a console
application—you can’t use this technique in a GUI application. However, this technique does enable you to
circumvent the requirement to access the Win32 API just to create a beep. The technique is important because
it provides you with another choice; one that doesn’t rely on unmanaged code.

The Win32 API Beep() function has the advantage of providing the greatest flexibility for the smallest cost in
resources. To use this technique, you must declare the Win32 API Beep() function as a DLL import using the
[DllImport] attribute. In this case, you must use unmanaged code to achieve your objective, but you don’t
need a wrapper DLL—C# and Visual Basic both provide all the support required. Notice that the Win32 API
Beep() function enables you to choose both the tone (frequency) and duration of the beep, which is something
you won’t get using an escape character or Visual Basic’s built−in function.

Some developers might not realize that they are able to access other language features from within the current
language by relying on a .NET Framework feature called Interaction. The third method, shown in Listing 1.1,
simply calls the Visual Basic Beep() function. You need to include a reference to the
Microsoft.VisualBasic.DLL to make this portion of the example work. This technique requires a little more
effort than making a direct Win32 API call, but it has the advantage of using pure managed code within the
C# application.

Sometimes you don’t want to use a plain beep within an application, so it’s helpful to know how to access
WAV files. The fourth technique, shown in Listing 1.1, has the advantage of complete sound source
flexibility. However, this technique also has the dubious honor of being the most complicated way to produce
a sound. The function call to PlaySound() is more complicated than the Beep() Win32 API call. You also need
to define constants to use it.

The point of this section is that you’ll find missing functionality within the .NET Framework, but you don’t
always have to rely on Win32 API calls to fill the gap. In many situations, you can rely on language
interoperability or built−in operating system functionality. When you do need to rely on the Win32 API,
you’ll find that some functions are easier to use than others. It isn’t always necessary to use the most complex
method when a simple one will work. In fact, in some cases, you’ll find that you can’t use the full−featured
function because the target language won’t support it.

Win32 Function Types

One of the problems in determining if a piece of functionality is missing from the .NET Framework is that the
framework is relatively large—not as large as the Win32 API, but large nonetheless. (At the time of this
writing, the download size for the .NET Framework was 21 MB.) So it pays to know where you’ll find holes
in the .NET Framework most often. The following sections discuss the various places where other developers
have found holes in the .NET Framework coverage of the Win32 API. You might find other areas when
working with special Win32 API features, but these sections provide you with a fairly complete overview.

Hardware

Every time Microsoft releases a new technology, they find a way to add yet more layers of code between the
developer and the hardware, and .NET is no exception. Any hope you entertained of direct hardware access
will quickly fade as you make your way through a few programming tasks. You’ll even find it difficult to

Win32 Function Types

8

access Windows driver and low−level DLL functionality—the access just isn’t there. Generally, you’ll find
that the .NET Framework provides you with objects that indirectly relate to some type of hardware
functionality, such as the use of streams for hard drive and printer access.

The lack of direct hardware access isn’t always a negative, however. Once you get used to using the .NET
Framework objects, you might find that direct hardware access is unnecessary or, at least, a rare event.
Common hardware types, such as printers and hard drives, won’t present a problem in most cases. Some
developers have complained about the level of support provided for common low−level devices like the serial
ports.

You’ll also run into problems when working with hardware that Microsoft didn’t anticipate. For example,
accessing many USB devices is a frustrating experience when working with .NET. In most cases, you’ll need
to use unmanaged code and a third−party library to access new devices. We’ll talk more about direct hardware
access in Chapter 7.

Security

Microsoft’s latest security craze is role−based security. It’s true that role−based security is extremely easy to
use and requires less effort on the part of the developer. In many cases, role−based security is also more
flexible than the security that Microsoft provided in the past. However, role−based security is also less than
appropriate if you need low−level control over the security features of your application.

There’s a place for tokens, access control lists, and all of the other paraphernalia of Win32 API security in
many applications, but you can’t gain access to these features within the .NET Framework. To gain access to
the low−level details of security within Windows, you still need to use the security calls provided by the
Win32 API. We’ll discuss security access within Chapter 8.

Operating System

It would seem that the operating system is the first thing you’d need to support as part of development
platform, but this isn’t necessarily true. Consider two existing types of application that don’t rely very heavily
on the operating system: browser−based applications and Java applications. Yes, both technologies require
basic access to the operating system, but you’ll find that for the most part you can’t access the operating
system as an entity. These development platforms rely on runtime engines that interact with the operating
system in a predefined manner.

The .NET Framework is a modern development platform that will hopefully see implementation on other
platforms. Consequently, you won’t see any operating system support in the core namespaces, but will see
some support in the Microsoft−specific namespaces. The separation of .NET functionality from operating
system functionality is understandable, given Microsoft’s stated goal of platform independence. However,
unlike other platforms, the .NET Framework does provide limited operating system interfaces. In fact, there
are three levels of operating system support that you need to consider when working with the .NET
Framework—and .NET only supports one of them.

Upper−Level Interface This is the level of operating support that the .NET Framework does support. The
support appears in several areas, but the two main namespaces are System.Windows.Forms and
Microsoft.Win32. As the names imply, the first namespace helps you gain access to the GUI features that
Windows provides, while the second namespace provides access to features like the registry. The level of
support in both areas is extensive, but limited to features that Microsoft felt a developer would need to create
business applications.

Win32 Function Types

9

Low−Level Services There are a lot of low−level services that the .NET Framework doesn’t even touch. For
example, if you want to learn about the capabilities of the display, you’ll need to use a Win32 API call to do
it. Likewise, if you want to learn the status of the services on a remote machine, you’ll have to resort to the
Win32 API. We’ll discuss low−level service access in greater detail in Chapter 10.

Version−Specific Features Generally, you’ll find that any operating system features that the .NET
Framework does support are also found in all versions of Windows since Windows NT. In some cases, you’ll
also find the new features originally found in the Windows 9x operating system interface. However, if you
want to use the new graphical features found in Windows XP, you’ll have to rely on the Win32 API. We’ll
discuss some of these special features and how to access them in Chapter 9.

Multimedia

Microsoft engineered the .NET Framework for business users. You won’t find support for any sound
capability and barely any functions for graphics. There isn’t any support for devices such as joysticks. In
short, if you want to work with multimedia, your only choices are using the Win32 API calls or employing
DirectX. Both of these solutions currently require the use of unmanaged code. Microsoft has said they plan to
create a managed version of DirectX, but it’s not a high priority. We’ll discuss multimedia issues in greater
detail in Chapter 11. A joystick example appears in Chapter 7 as part of direct hardware access.

Utility

There are a number of utility applications within Windows that require special interfaces. The most prominent
of these utility applications is the Microsoft Management Console (MMC), which acts as a container for
special components called snap−ins. The MMC is a vital tool for network administrators (and even for the
common user) because it enables you to perform tasks such as monitor computer performance and manage
user security. Unfortunately, the .NET Framework doesn’t include support for this necessary utility, despite
constant requests from developers during the beta process. You’ll find a comprehensive MMC example in
Chapter 12, along with tips for working with other utility application types.

DirectX

It wasn’t long ago that game developers fought with Microsoft over the need to access hardware directly in a
way that would keep Windows in the loop without the performance−robbing penalty of actually using
Windows. The result of this conflict is DirectX—an advanced programming technology for working with a
wide range of multimedia hardware. Given Microsoft’s goal of making the .NET Framework business
friendly, it’s not too surprising they failed to include any DirectX support.

Unfortunately, some business application developers rely on DirectX to produce complex reports and perform
other business−related multimedia tasks. Part of the problem may be that Microsoft viewed the behemoth that
is DirectX and decided they needed to implement it at a later date to get the .NET Framework out in a timely
manner. Rumors abound that Microsoft plans to release a .NET Framework friendly version of DirectX
sometime in the future, but for now, you need to rely on unmanaged programming techniques to work with
DirectX.

DirectX is a complex topic—one that many books can’t cover in detail. Consequently, we’ll discuss DirectX
in the chapters found in Part IV of the book. We won’t discuss DirectX itself. I’m assuming you already know
how to use DirectX (or will find another book to guide you). These chapters show how to make DirectX work
with managed applications—no small undertaking, but definitely doable.

Win32 Function Types

10

Win32 Access Requirements

It’s important to know what you need to do in order to access the Win32 API once you decide that the .NET
Framework doesn’t provide a required level of support. Generally speaking, Win32 API access isn’t difficult
for general functions. If you look again at the Beep() example in Listing 1.1, you’ll notice that gaining access
to the required functions doesn’t require a lot of code. However, you do need to know something about the
function you want to access, including the fact that it exists. The following list details some of the information
you need (we’ll discuss this information in detail in Chapter 2).

A knowledge of the function and its purpose•
A complete list of all function arguments and return values•
A description of any constants used with the function•
Complete details about any structures the function requires for data transfer•
The values and order of any enumeration used with the function•

Not every function requires all of this information, but you need to at least verify what information the
function does require. A simple function may require nothing more than a [DLLImport] entry and a call
within your code. Complex functions might require structures, which means converting the data within the
structure to match the language you’re using within .NET. The most complex functions may have data
structure elements such as unions that are impossible to replicate properly within a managed environment,
which means creating a wrapper function in an unmanaged language such as Visual C++ (the language we’ll
use for this purpose throughout the book).

Sometimes what appears to be a single function call actually requires multiple functions. For example, the
.NET Framework doesn’t offer any way to clear the console screen, so you need to perform this task using a
Win32 API call. Unfortunately, clearing the screen means moving the cursor and performing other low−level
tasks—a single call won’t do. Listing 1.2 shows a typical example of a single task that required multiple
function calls. (The source code for this example appears in the \Chapter 01\C#\ClearScreen and the \Chapter
01\VB\ClearScreen folders of the CD.)

Note Don’t worry if this listing appears a bit on the complex side—you’ll learn about all of the
features in this example as you progress through the book. In fact, this example is just a good
beginning point for the complex code that we’ll discuss later.

Listing 1.2: Clearing the Screen Requires Multiple Function Calls

// This special class contains an enumeration of
// standard handles.
class StdHandleEnum
{
 public const int STD_INPUT_HANDLE = −10;
 public const int STD_OUTPUT_HANDLE = −11;
 public const int STD_ERROR_HANDLE = −12;
};
// This sructure contains a screen coordinate.
[StructLayout(LayoutKind.Sequential, Pack=1)]
 internal struct COORD
{

 public short X;
 public short Y;
}

// This stucture contains information about the

Win32 Access Requirements

11

// console screen buffer.
[StructLayout(LayoutKind.Sequential, Pack=1)]
 internal struct CONSOLE_SCREEN_BUFFER_INFO
{
 public COORD Size;
 public COORD p1;
 public short a1;
 public short w1;
 public short w2;
 public short w3;
 public short w4;
 public COORD m1;
}

// We need these four functions from kernel32.dll.
// The GetStdHandle() function returns a handle to any
// standard input or output.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern IntPtr GetStdHandle(int nStdHandle);

// The GetConsoleScreenBufferInfo() returns information
// about the console screen buffer so we know how much to
// clear.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool GetConsoleScreenBufferInfo(
 IntPtr hConsoleOutput,
 out CONSOLE_SCREEN_BUFFER_INFO lpConsoleScreenBufferInfo);

// The SetConsoleCursorPosition() places the cursor on the
// console screen.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool SetConsoleCursorPosition(
 IntPtr hConsoleOutput,
 COORD dwCursorPosition);

// The FillConsoleOutputCharacter() allows us to place any character
// on the console screen. Using a space clears the display area.
[DllImport("kernel32.dll", SetLastError=true, CharSet=CharSet.Auto)]
public static extern bool FillConsoleOutputCharacter(
 IntPtr hConsoleOutput,
 short cCharacter,
 int nLength,
 COORD WriteCoord,
 out int lpNumberOfCharsWritten);

[STAThread]
static void Main(string[] args)
{
 // Needed ask Windows about the console screen
 // buffer settings.
 CONSOLE_SCREEN_BUFFER_INFO CSBI;
 // Handle to the otuput device.
 IntPtr hOut;
 // Number of characters written to the screen.
 int CharOut;
 // Home cursor position.
 COORD Home;

 // Write some data to the screen.
 Console.Write("Some Text to Erase!" +
 "\r\nPress any key...");

Win32 Access Requirements

12

 Console.ReadLine();

 // Clear the screen.
 // Begin by getting a handle to the console screen.
 hOut = GetStdHandle(StdHandleEnum.STD_OUTPUT_HANDLE);
 // Get the required console screen buffer information.
 GetConsoleScreenBufferInfo(hOut, out CSBI);

 // Set the home position for the cursor (upper left corner).
 Home.X = 0;
 Home.Y = 0;

 // Fill the console with spaces.
 FillConsoleOutputCharacter(hOut,
 (short) ‘ ‘,
 CSBI.Size.X * CSBI.Size.Y,
 Home,
 out CharOut);

 // Place the cursor in the upper left corner.
 SetConsoleCursorPosition(hOut, Home);

 // Show the screen is clear.
 Console.ReadLine();
}

Notice that this example uses more of the elements typical of a Win32 API call, including an enumeration and
two structures. The code requires an enumeration for standard output handles. An output handle is simply a
pointer to a device such as the screen. The three standard devices are input, output, and error. We also need
two structures to fulfill the needs of the Windows API calls used in the example. The code listing describes
each structure’s task.

The example code relies on four Windows API functions, all of which appear in the KERNEL32.DLL. All
four perform some type of console screen manipulation. The code listing describes each function’s task.

The short part of the code is actually demonstrating the console screen clearing process. Main() creates some
output on screen. The ReadLine() call merely ensures the code will wait until you see the text. Press Enter and
the clearing process begins.

The first thing we need is a handle to the console output. The handle tells Windows what device we want to
work with. Once we have a handle to the output device, we need to ask Windows about its dimensions. The
dimensions are important because you want to ensure the console screen erases completely. The
FillConsoleOutputCharacter() function call fills the screen with spaces—the equivalent of erasing its content.
Finally, we place the cursor in the upper left corner—the same place the CLS command would.

Of course, working with Windows means more than just making simple function calls; sometimes you need to
work with COM as well. Once you get past simple functions and into the COM environment, development
quickly gains a level or two of complexity. For example, if you want to create a COM equivalent component,
you’ll also need to discover and implement the interfaces supported by the unmanaged component.
Sometimes the interfaces can become complex and difficult to re−create, as we’ll see in the MMC example in
Chapter 12.

Win32 Access Requirements

13

Win32 Access for C# Developers

C# developers have a number of advantages over other .NET languages when it comes to Win32 access. The
most important is the ability to use unsafe code and pointers. Many developers find that C# is an outstanding
choice for the low−level programming tasks required for Win32 access. Of course, there’s no free lunch—you
pay a price whenever you gain some level of flexibility in the development environment. The following
sections provide you with an overview of the pros and cons of using C# as your development language. We’ll
discuss these issues in greater detail as the book progresses.

Understanding the Effects of Unsafe Code

The term “unsafe code” is somewhat ambiguous because it doesn’t really tell you anything about the code. A
better way to view unsafe code is unmanaged code that appears within a managed environment. Any code that
relies on the use of manual pointers (* symbol) or addresses (& symbol) is unsafe code. Whenever you write
code that uses these symbols, you also need to use the unsafe keyword in the method declaration as shown
below. (This example appears in the \Chapter 01\C#\Unsafe folder of the CD.)

unsafe private void btnTest_Click(object sender, System.EventArgs e)
{
 int Input = Int32.Parse(txtInput.Text); // Input string.

 // Convert the input value.
 DoTimeIt(&Input);

 // Display the result
 txtOutput.Text = Input.ToString();
}
unsafe private void DoTimeIt(int* Input)
{
 int Output; // Output to the caller.

 // Display the current minute.
 txtMinute.Text = System.DateTime.Now.Minute.ToString();

 // Create the output value.
 Output = *Input;
 Output = Output * System.DateTime.Now.Minute;

 // Output the result.
 *Input = Output;
}

This is a simple example that we could have created using other methods, but it demonstrates a principle
you’ll need to create applications that rely on the Win32 API later. The btnTest_Click() accesses the input
value, converts it to an int, and supplies the address of the int to the DoTimeIt() method. Because we’ve
supplied an address, rather than the value, any change in the supplied value by DoTimeIt() will remain when
the call returns.

The DoTimeIt() method accesses the current time, multiplies it by the value of the input string, and then
outputs the value. Notice the use of pointers in this method to access the values contained in the Input and
Output variables. The reason this code is unsafe is that the compiler can’t check it for errors. For example, you
could replace the last line with Input = &Output; and the compiler would never complain, but you also
wouldn’t see the results of the multiplication.

Win32 Access for C# Developers

14

Besides using the unsafe keyword, you also need to set your application to use unsafe code. Right−click the
project name in Solution Explorer and choose Properties from the context menu. Select the Configuration
Properties\Build folder and you’ll see the Allow unsafe code blocks option shown in Figure 1.1. Set this
option to True to enable use of unsafe code in your application.

Figure 1.1: Using the Allow unsafe code blocks option to enable use of unsafe code in your application.

Note You can’t use pointers on managed types, but you can use them on values. For example, you can’t
obtain the address of a string because a string is a managed type. The reason this example works in C# is
that int is a value type. If you need to pass a string, then it’s important to know other ways to mimic
pointers. For example, you can pass a string using the ref or out keywords, or you can marshal it using
various techniques.

Generally, you should avoid using unsafe code whenever possible, if only to get as much help as possible
from the compiler. The “Understanding the Effects of Pointers” section tells you about managed alternatives
that mimic pointers. In short, while unsafe code is a necessity when working with the Win32 API, you should
avoid it whenever possible.

Understanding the Effects of Pointers

One of the first issues that you’ll face when working with the Win32 API is the use of pointers—the Win32
API uses them by the gross. You’ll find pointers as function arguments, within structures, and even nested
within each other. The problem with pointers is that they aren’t objects; they really aren’t anything. A pointer
is an abstraction, an address for something real. The pointer to your house is the street address found on letters
and packages. The .NET Framework refrains from relying on pointers (from a developer’s perspective) and
uses the actual object whenever possible. The pointers are still there; CLR simply manages them for you.

As mentioned in the previous section, you can use actual pointers in C# if you’re also willing to deal with the
problems of unsafe code. Unlike other .NET languages, C# embraces C++ type pointers, which makes it ideal
for creating low−level routines and even wrapper DLLs in many situations. However, there are many ways to
mimic pointers so that you can gain the benefits of the Win32 API without losing the benefits of the managed
environment.

The first thing to consider is that pointers aren’t always necessary. For example, the code in Listing 1.1 works
fine without pointers because we’re passing values to the Win32 API and not expecting anything in return.
Avoid pointers whenever possible by verifying the need for them first. In many situations, you can simply
pass a value to the Win32 API when a return value isn’t needed by your application.

Understanding the Effects of Pointers

15

Another issue to consider is the use of pointer substitutes. Look at the FillConsoleOutput−Character() method
declaration in Listing 1.2 and you’ll notice that it relies on the out keyword to return the number of characters
written to the screen. An IntPtr easily handles the console output handle (essentially a pointer to a pointer). In
fact, you can place this use of an IntPtr in your rules of thumb book. Generally, you can replace a handle with
an IntPtr for all Win32 API calls.

Sometimes you must use a pointer—there simply isn’t any way around the issue. For example, you’ll often
find that COM calls require pointers to pointers, such as when you want to work with an interface. In this
situation, you might find it impossible to develop a substitute for pointers. When this problem occurs, try to
localize the pointer code to a special function, even if it might not make sense to create a separate function
from a program flow perspective. Placing the pointer in its own function makes it simpler to work with the
pointer, reduces the probability of missed pointer errors, and makes it easier to debug the application later.

Advantages for the C# Developer

C# developers have certain advantages when using the Win32 API. We’ve already discussed some of these
advantages, but the most important is support for pointers and unsafe code. However, C# has some other
advantages and I’d be remiss not to mention them.

C−like Language Structures Most of the information you’ll need to access Win32 API is found in the C
header files that come with Visual Studio. In fact, when you research a function in the Visual Studio help
files, the information is often presented using C header file entries. While C# isn’t C, it does have many of the
same features, making conversion a lot easier than other languages.

Direct Language Conversion It’s possible to recreate most C structures using C# without much effort. In
fact, several of the examples in the book use the content from the C header files with small changes to account
for language differences between C and C#. Because you don’t have to interpret the structures, you’ll find that
writing the code to access the Win32 API from C# is relatively easy. The only time you’ll run into problems is
when you need to write code for complex COM interfaces and methods.

Less Language Baggage Generally, you’ll find that if the .NET Framework doesn’t support a Win32 API
feature, then C# doesn’t support it either. Knowing this fact saves time because you don’t have to research the
language to discover if it provides the required support. Of course, this could also be viewed as a negative
because C# will require Win32 API function calls more often than languages that do provide robust language
support for Windows features.

Better Microsoft Support It may be a quirk, but every time someone from Microsoft demonstrates a
low−level language example for .NET, it appears in C# before it appears in any other language. C# is also the
language of choice on newsgroups and on Web sites in many cases. Visual Basic is next on the list.
Interestingly enough, the language most capable of handling Win32 API calls is the one that is seldom
used—Visual C++.

Win32 Access for Visual Basic Developers

In the past, Advanced Visual Basic developers were used to accessing Win32 API functions because Visual
Basic has always had certain holes in its coverage of Windows features. From this perspective, nothing has
changed for Visual Basic .NET developers. What has changed is that you now have the additional hurdle of
working with managed code when accessing the Win32 API, and this can make a significant difference.

Advantages for the C# Developer

16

Warning Don’t get the idea that you can use your old Visual Basic code directly in Visual Basic .NET.
Some developers have stated that Microsoft created an entirely new language when they
developed Visual Basic .NET. While this view might not be strictly true, it’s true that your
old code won’t run as is—even the Win32 API access code. Your old code does provide a
starting point, however, so make sure you use it as a reference as you develop your new
Visual Basic .NET code.

Visual Basic still offers ease of use features that C# doesn’t have. You can still prototype applications quickly
using very little code. Unfortunately, the addition of managed code has put Visual Basic developers at a
decided disadvantage in the Win32 API access arena. There are certain types of Win32 API access that you
simply can’t create using Visual Basic because it lacks support for unsafe code and pointers.

The following sections detail the advantages and disadvantages of using Visual Basic to access the Win32
API. At times you’ll consider the disadvantages more important and may even decide to implement the Win32
API access using a wrapper DLL. However, Visual Basic does have features that make it the best language
choice, in some cases, and we’ll discuss them as well.

Note Throughout the book, you’ll see examples in both Visual Basic and C#. If it’s possible to
perform an access task in both languages, you’ll find the example in both languages on the CD,
even if the Visual Basic source code doesn’t appear in the text. You can create every example in
the book using C#, but some examples are beyond the capabilities of Visual Basic .NET.
Whenever an example fails in Visual Basic, the book will include an explanation of the problem
and provide you with some alternatives whenever possible. There are some examples where
you’ll have to rely on C# or Visual C++ to perform the task.

Understanding Visual Basic Limitations

The biggest limitations for Visual Basic .NET developers are lack of unsafe code and lack of pointer support.
You can get around some of these limitations using the techniques in the “Understanding the Effects of
Pointers” section of the chapter. Essentially, you need to be able to provide the input to the Win32 API call
using something other than a pointer, which often means a either compromise or not using the call at all.

Visual Basic developers also have language problems to overcome. If you want to use the Win32 API, you
also need to know how the C header files work, which means having some knowledge of the C language.
Many Visual Basic developers lack this knowledge, making it difficult to create a Visual Basic version of a
structure, function call, or other construct originally written in C.

In most cases, Visual Basic developers will find it difficult to re−create complex COM interfaces. For
example, the MMC example defies implementation in Visual Basic because it relies heavily on COM
interface simulation. In fact, this particular task is barely doable in C# and you still need to create a Visual
C++ wrapper for certain MMC function calls. In short, some tasks will defy every effort to complete in Visual
Basic because there’s no conduit for communication with the Win32 API.

Another problem with Visual Basic is that you can’t re−create some of the stranger Win32 API structures. For
example, some structures include unions, which is a feature that Visual Basic doesn’t support. Unfortunately,
there isn’t any workaround for this problem other than to emulate the union in some other manner. In many
cases, there isn’t any way to emulate the union, making it impossible to call the Win32 API function that
relies on the structure in question.

One of the advantages of Visual Basic is also a disadvantage. Developers gain a significant development
speed boost by using Visual Basic. It enables a developer to prototype applications quickly. Coding and

Understanding Visual Basic Limitations

17

debugging are equally fast in most cases. All of these features come with a price, however, a lack of contact
with the lower−level functions of the operating system. Visual Basic hides a lot of the usual operating system
plumbing from the developer—a bonus when you don’t require such access and a problem when you do.

Advantages for the Visual Basic Developer

Visual Basic .NET does have some limitations when it comes to Win32 API access, but it also has some
advantages. Faster development time is just one advantage we’ve discussed so far and it’s an important issue
in a world where speed is everything. However, there are other factors in favor of Visual Basic and the
following list tells you about them.

Existing Code Even though you can’t use existing Visual Basic code to access the Win32 API, you can use it
as a source of information, and that’s worth quite a bit to developers on a time schedule. The existing code is
well understood, debugged, and ready to use. Simple Win32 API calls present the least number of problems
for the Visual Basic developer. For example, the various beep function calls examined in Listing 1.1 present
few problems because they require basic input and no output.

Stronger Language Support Remember that it’s only necessary to call the Win32 API if the .NET
Framework and the language lack support for a Windows feature. For example, C# lacks support for any type
of beep function, so we need to create one. However, Visual Basic doesn’t have this lack—it supplies a beep
function, so you don’t even need to use the Win32 API in this case. Visual Basic provides more built−in
features than many other languages, making Win32 API access unnecessary in the first place.

Where Do You Go from Here?

This chapter has introduced you to the needs and requirements for Win32 API access from .NET languages.
We’ve discussed some of the potential problems of working with the Win32 API and why you need to
exercise care when making a Win32 call. This chapter has also pointed out some areas where the .NET
Framework lacks certain types of support, so the need to use the Win32 API is very real.

Make sure you run the examples in this chapter because they demonstrate some of the essential principles
we’ll discuss in detail as the book progresses. It’s also important to begin learning the rules of thumb
presented throughout the chapter. For example, you should only use pointers when necessary in an
application; otherwise, you might find it difficult to trouble− shoot an errant pointer or figure out why an
application misbehaves in some strange way.

As part of the preparation for this book, you’ll want to know how to work in the .NET environment using
either Visual C# or Visual Basic. It’s important to know how the .NET Framework is put together and how
you use it within an application. Consequently, you might want to use my previous book, Visual C# .NET
Developer’s Handbook (ISBN 0782140475, Sybex 2002) as an aid to learning C# at the intermediate level.

Chapter 2 begins the process of working with the Win32 API. We’ll discuss data in its various forms. You’ll
learn about everything from simple variables to structures to enumerations. Remember that the Win32 API
relies on unmanaged data, so you always need to consider data conversion a part of the calling process. In
some cases, CLR will help you with the data conversion; but in many other situations, you’ll need to create
your own solutions. Chapter 2 is your key to making good data conversion decisions.

Advantages for the Visual Basic Developer

18

Chapter 2: Working with Win32 API Data

Overview

The goal of most operations in a computer application is data access. The function retrieves, sets, modifies,
deletes, creates, or otherwise manipulates the data. With that in mind, this chapter will discuss Win32 API
data—the essential part of the Win32 API experience for most developers.

There are four levels of data that the Win32 API manipulates: variables, data structures, pointers, and
enumerations. This chapter discusses all four levels of data in separate sections because each type requires a
different treatment within a managed application. Even a data structure, which is essentially a collection of
variables and pointers, requires special handling because of the way that managed applications work.

We’ll also discuss the all−important issue of importing resources from the unmanaged environment into the
managed application environment. You need to know how to perform this task to make use of the existing
resources that Windows provides instead of taking a “reinvent the wheel” approach merely because the
resource is inconveniently placed in a DLL.

A Short View of Data

Microsoft wrote many of the DLLs found in Windows using C, not C++ but straight C. Some of the DLLs use
C++ and a very few use other languages (and we’re talking a very few). This means that you’ll have to work
with C libraries to use the Win32 API in most cases. Unlike the unmanaged environment found in Visual
Studio 6, Visual Studio .NET provides little in the way of wrappers that you can simply use to access the
Win32 API without the frustration of working with C.

Working with C library files means converting data from the managed environment into a form that the
library functions will understand. Of course, neither Visual Basic nor C# provides support for an HRESULT or
a LPTSTR, which are the standard fare of C library routines. This means that you need to know the underlying
data type for the C library types that you’ll encounter. For example, you’ll find that an HRESULT converts
quite easily to a System.Int32 value. The problem is that you won’t know this at first because none of the
documentation provided with Visual Studio tells you about conversions between managed and unmanaged
types—an issue we’ll discuss throughout the book, but especially in this chapter.

In some cases, you can’t directly convert an unmanaged type to a managed type. This is always true for
structures, but you’ll also run into the problem with some variable types. When this problem occurs, the .NET
Framework generally provides some way to marshal the data using the [MarshalAs] attribute. You’ll find this
attribute in the System.Runtime.Interop−Services namespace. Listing 2.1 shows an example of how to use the
[MarshalAs] attribute, along with a few new Win32 API techniques we haven’t yet discussed. You’ll find the
source code for this example in the \Chapter 02\C#\ShowMessage and \Chapter 02\VB\ShowMessage folders
of the CD.

Note The example code in Listing 2.1 shows all of the potential inputs for MessageBoxEx().
However, not all of the inputs are available in every version of Windows. In fact, many of
the unique features are only available in Windows 2000 and Windows XP. Make sure you
check the Platform SDK documentation for potential problems when using these features in
other versions of Windows. The example was tested under both Windows 2000 and
Windows XP—it doesn’t work under most versions of Windows 9x.

19

Listing 2.1: MessageBoxEx() Example using the [MarshalAs] Attribute

// MessageBoxEx() provides features, including a language identifier,
// not found in the .NET Framework version. This function also enables
// you to add special buttons and other features to the message box.
[DllImport("user32.dll", CharSet=CharSet.Auto)]
public static extern int MessageBoxEx(
 IntPtr hWnd,
 [MarshalAs(UnmanagedType.LPTStr)]String Message,
 [MarshalAs(UnmanagedType.LPTStr)]String Header,
 UInt32 Type,
 UInt16 LanguageID);

// Create a list of buttons.
public class MBButton
{
 public const UInt32 MB_OK = 0x00000000;
 public const UInt32 MB_OKCANCEL = 0x00000001;
 public const UInt32 MB_ABORTRETRYIGNORE = 0x00000002;
 public const UInt32 MB_YESNOCANCEL = 0x00000003;
 public const UInt32 MB_YESNO = 0x00000004;
 public const UInt32 MB_RETRYCANCEL = 0x00000005;
 public const UInt32 MB_CANCELTRYCONTINUE = 0x00000006;
 public const UInt32 MB_HELP = 0x00004000;
}

// Create a list of icon types.
public class MBIcon
{
 public const UInt32 MB_ICONHAND = 0x00000010;
 public const UInt32 MB_ICONQUESTION = 0x00000020;
 public const UInt32 MB_ICONEXCLAMATION = 0x00000030;
 public const UInt32 MB_ICONASTERISK = 0x00000040;
 public const UInt32 MB_USERICON = 0x00000080;
 public const UInt32 MB_ICONWARNING = MB_ICONEXCLAMATION;
 public const UInt32 MB_ICONERROR = MB_ICONHAND;
 public const UInt32 MB_ICONINFORMATION = MB_ICONASTERISK;
 public const UInt32 MB_ICONSTOP = MB_ICONHAND;
}

// Create a list of default buttons.
public class MBDefButton
{
 public const UInt32 MB_DEFBUTTON1 = 0x00000000;
 public const UInt32 MB_DEFBUTTON2 = 0x00000100;
 public const UInt32 MB_DEFBUTTON3 = 0x00000200;
 public const UInt32 MB_DEFBUTTON4 = 0x00000300;
}

// Create a list of message box modalities.
public class MBModal
{
 public const UInt32 MB_APPLMODAL = 0x00000000;
 public const UInt32 MB_SYSTEMMODAL = 0x00001000;
 public const UInt32 MB_TASKMODAL = 0x00002000;
}

// Create a list of special message box attributes.
public class MBSpecial
{
 public const UInt32 MB_SETFOREGROUND = 0x00010000;

Chapter 2: Working with Win32 API Data

20

 public const UInt32 MB_DEFAULT_DESKTOP_ONLY = 0x00020000;
 public const UInt32 MB_SERVICE_NOTIFICATION_NT3X = 0x00040000;
 public const UInt32 MB_TOPMOST = 0x00040000;
 public const UInt32 MB_RIGHT = 0x00080000;
 public const UInt32 MB_RTLREADING = 0x00100000;
 public const UInt32 MB_SERVICE_NOTIFICATION = 0x00200000;
}

// Return values can use an enum in place of a class.
public enum MBReturn
{
 IDOK = 1,
 IDCANCEL = 2,
 IDABORT = 3,
 IDRETRY = 4,
 IDIGNORE = 5,
 IDYES = 6,
 IDNO = 7,
 IDCLOSE = 8,
 IDHELP = 9,
 IDTRYAGAIN = 10,
 IDCONTINUE = 11,
 IDTIMEOUT = 32000
}

private void btnTest_Click(object sender, System.EventArgs e)
{
 MBReturn Result; // Result of user input.

 // Display a message box.
 Result = (MBReturn)MessageBoxEx(this.Handle,
 "This is a message box.",
 "Test Message Box",
 MBButton.MB_CANCELTRYCONTINUE | MBButton.MB_HELP |
 MBIcon.MB_ICONEXCLAMATION |
 MBModal.MB_SYSTEMMODAL |
 MBDefButton.MB_DEFBUTTON4 |
 MBSpecial.MB_TOPMOST,
 0);

 // Determine a result.
 switch (Result)
 {
 case MBReturn.IDCANCEL:
 MessageBox.Show("Returned Cancel");
 break;
 case MBReturn.IDTRYAGAIN:
 MessageBox.Show("Returned Try Again");
 break;
 case MBReturn.IDCONTINUE:
 MessageBox.Show("Returned Continue");
 break;
 default:
 MessageBox.Show("Couldn’t Determine Return Value");
 break;
 }
}

private void frmMain_HelpRequested(object sender,
 System.Windows.Forms.HelpEventArgs hlpevent)
{

Chapter 2: Working with Win32 API Data

21

 // Display information about the help request.
 MessageBox.Show("The user requested help:\r\n" +
 "\r\nSender: " + sender.ToString() +
 "\r\nMouse Position: " + hlpevent.MousePos,
 "Help Requested",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 // Tell Windows that the help request was handled.
 hlpevent.Handled = true;
}

Yes, this is a lot of code to display a simple message box, but the MessageBoxEx() function provides a lot of
functionality that you won’t find in the MessageBox.Show() function. Like MessageBox.Show(), you can
associate a MessageBoxEx() message box with the current window. In fact, you have to provide the
association to make the special features such as the Help button work correctly. If you want a working Help
button, you also need to include a HelpRequested() event handler for the main form—see the
frmMain_HelpRequested() method in Listing 2.1 for details.

Tip One of the problems you’ll notice with the information provided to the frmMain_Help−Requested()
method is that C# doesn’t tell you who actually called the help routine. The best way to handle this
problem is to set a property or field prior to the MessageBoxEx() call, and then check that value within
the frmMain_HelpRequested() method. This technique helps you determine the true source of a help
request, making context−sensitive help easier to provide.

The main focus of this section is the use of the [MarshalAs] attribute in the MessageBoxEx() declaration.
Notice that we need to use this attribute for both string inputs. You might see some odd output without the
attribute (or the call might simply fail). As previously mentioned, you need to use an IntPtr for handles. The
Type variable can include a number of inputs as shown in the btnTest_Click() method. You use it for the
buttons, icons, and special features. One special feature affects the modality of the resulting message box.
We’ll discuss the various enumerations in the "Working with Enumerations" section of the chapter. The
LanguageID variable doesn’t appear to have any use within the current implementation of the
MessageBoxEx() function—at least not according to the documentation. Given the amount of work Microsoft
is doing with language specific features, you should expect to see this variable implemented sometime in the
future.

The btnTest_Click() shows off a few of the unique features of the MessageBoxEx() function. Figure 2.1
shows the output of this code. Notice that the message box has four buttons and that we selected the Continue
button as default. The first three buttons appear because of the MBButton.MB_CANCELTRYCONTINUE
enumeration member, while the help button appears because of the MBButton.MB_HELP enumeration
member.

Figure 2.1: The MessageBoxEx() function provides features you won’t find in MessageBox.Show().

Chapter 2: Working with Win32 API Data

22

One of the special features of this message box is the result of the MBSpecial.MB_TOPMOST enumeration
member. No matter what you do, this message box will remain on top—you can’t hide it. The message box
opens with the Help button selected due to the inclusion of the MBDefButton.MB_DEFBUTTON4
enumeration member. In addition, notice the System menu icon in the upper left corner of the message box.
This icon is the result of the MBModal_.MB_SYSTEMMODAL enumeration member. As you can see in
Figure 2.2, you have access to the normal System menu functions within this message box.

Figure 2.2: The MessageBoxEx() function enables you to add a System menu to your message box.

The btnTest_Click() method checks the return value of the test message box. Notice that you can check for
those special buttons. Replacing the Cancel, Try Again, and Help buttons with Abort, Retry, and Fail resulted
in a "Couldn’t Determine Return Value" return value. The return values are truly unique. Let’s get back to the
[MarshalAs] attribute. The [MarshalAs] attribute tells CLR how to interact with a variable. For example, you
can tell CLR that you want to use a String variable as a substitute for a LPSTR, LPWSTR, LPTSTR, or BSTR
variable by specifying the correct UnmanagedType enumeration value. You can also include arguments for
variable type, array and safearray size, array and safearray subtype, cookies, and a custom marshaler.

Using a custom marshaler means that you can theoretically transform any managed type into an unmanaged
equivalent—in practice this task is exceptionally difficult. Not only do you have the normal concerns in
writing a marshaler, but you also have to consider the transition from the managed to unmanaged environment
(and back in some cases). Fortunately, the need to write a custom marshaler is rare.

One final word of caution when working with the marshaler—don’t count on all languages to implement it the
same way. The marshaler tends to react differently based on language because each language has different
native data types. For example, accessing the MessageBoxEx() function requires additional work in Visual
Basic because of language differences. Here’s the Visual Basic declaration of the same example.

<DllImport("user32.dll", _
 EntryPoint:="MessageBoxExW", _
 CharSet:=CharSet.Auto)> _
Public Shared Function MessageBoxEx(_
 ByVal hWnd As IntPtr, _
 <MarshalAs(UnmanagedType.LPTStr)> ByVal Message As String, _
 <MarshalAs(UnmanagedType.LPTStr)> ByVal Header As String, _
 <MarshalAs(UnmanagedType.U4)> ByVal Type As Integer, _
 <MarshalAs(UnmanagedType.U4)> ByVal LanguageID As Integer) _
 As Integer
End Function

Notice that in the Visual Basic version of the declaration, you must include a specific entry point or the
message text will fail to print properly (you’ll see just the first letter). The <MarshalAs> attribute now appears
for all input parameters except the window handle, because we have to define the input arguments as type
Integer. Unlike the examples in Chapter 1, this function must be declared as Shared—simply declaring it
public won’t work. The call to the MessageBoxEx()function will fail with an ambiguous error. In short,
Visual Basic tends to require more precise marshaling of variables than C# does.

Chapter 2: Working with Win32 API Data

23

Unmanaged Resources and the Garbage Collector

There are a number of problems that developers will face when working with Win32 API data in a managed
environment—not the least of which is the Garbage Collector. It’s essential to remember that the Garbage
Collector is designed to work with managed data in a managed environment that the Garbage Collector can
monitor. This statement points out two potential problems when working with the Win32 API.

The first problem occurs when a developer creates unmanaged data. For example, you might need to create a
pointer to an interface in a COM object or create a handle to an icon that a Win32 API function can use. The
Garbage Collector doesn’t know about this resource, so it can’t automatically release the resource when it
goes out of scope. In short, you need to release the resource before the application terminates. Generally,
you’ll create the resource using a Win32 API function so you’ll also free the resource using a Win32 API
function.

The second problem occurs when you create a managed resource that you pass to a Win32 API function. The
Garbage Collector will collect any resource without a reference, and it doesn’t recognize the Win32 API
function’s use of the resource. Consequently, the Garbage Collector could release the resource before the
Win32 API function finishes using it. To prevent this problem, you’ll normally need to create a managed
reference to the resource at the same scope level as the Win32 API function use of the resource. After you
release the resource used by the Win32 API function, you can also release the managed reference to it.

The Garbage Collector can also cause other odd problems with your Win32 API calls. The big problem is that
you can’t view these problems in the debugger, in many cases, because the debugger creates a reference to the
variables and modifies the behavior of the application. In short, troubleshooting an application can become
difficult once the Garbage Collector is involved because the problems appear as “ghosts” that you’ll have a
hard time tracking.

Working with Variables

Understanding the techniques for working with variables is an essential part of gaining access to the Win32
API. For example, as we saw in the “A Short View of Data” section, you can replace the handles required by
many Win32 API calls with an IntPtr. However, as with marshaled data, the transition path isn’t always clear.
In some cases, you have to make decisions on how best to move data from one environment to another.

Tip The easiest way to detect problem variables to is classify them as value or reference types. Value types
tend to require little translation and you can usually move them without marshaling in C#. Reference
types require some type of translation in most cases. In fact, some reference types won’t move between
the managed and unmanaged environments, which means you’ll need to create a conversion routine that
moves the data between object properties and structure elements.

This section of the chapter discusses techniques for working with variables. Most notably, we’ll discuss
techniques for converting data from managed to unmanaged types and back. While some techniques are the
same no matter which language you use, other techniques require language−specific implementations. With
this in mind, the following sections discuss data conversion in light of two languages, C# and Visual Basic.

Working with Variables

24

Converting Variables to C# Types

The difference between reference and value types becomes critical when working with C libraries. You can
pass most value types such as int directly to a C library routine without any problem. In fact, the example
shown in Listing 2.1 passes several value types to the C library. Enumeration also falls into the value
category. Unless an enumeration contains both positive and negative values, use the uint type to represent it in
your code.

Once you get past basic value types, it’s time to convert the C library data type into something C# can
understand (and vice versa). Generally, you’ll find that pointers convert well to the IntPtr type. We’ve already
discussed handles in several places, but other pointers work well as the IntPtr type. For example, pointers to
numeric values such as the LPARAM also convert to the IntPtr with relative ease. Sometimes odd−looking
types like MMC_COOKIE are actually long pointers in disguise, so you can use IntPtr to represent them.

Tip It occasionally helps to create an extremely small example of a Win32 API function call in Visual C++ to
determine how to handle the variables in your managed code. Once you have a small working example,
you can use the IDE to help you make variable conversion decisions. Hover the mouse over a value in the
header file to discover how Visual C++ defines it. In most cases, you’ll see a typedef in the balloon that
makes the base type of the value clear. For example, the balloon for MMC_COOKIE contains typedef
LONG_PTR MMC_COOKIE, which makes it clear that you can use an IntPtr to represent _the
MMC_COOKIE. If the balloon help isn’t as helpful as you’d like, right−click the type (not the variable)
and choose Go to Definition or Go to Declaration from the context menu. Generally, you can use this
technique to "drill down" into the header file and find useful information for defining the data type in the
managed environment.

Variable conversion requires some level of discretion. You can’t depend on a one−to−one correspondence
between pointer types in the Win32 API call and your managed code. There are some situations when there’s
less of a need to use an IntPtr, even if the function indicates use of a pointer. For example, if a function only
requires an integer value as input, you don’t need to use an IntPtr. Using the Int in place of the IntPtr will
reduce the overhead of your application by a small amount (and those small amounts can really add up). In
addition, using an int reduces the complexity of the code and makes it easier to debug.

While using an int will reduce the overhead of your code, it may leave other developers scratching their heads
since the use of an int is inconsistent with the use of an IntPtr in other cases. If in doubt, always use an IntPtr,
but be aware that there are some situations when an int will work just as well. When you do use an int in place
of an IntPtr, be sure to document the modification and your reasoning as part of the source code.

Tip The typedefs used within C header help make the code easier to read by documenting the data type.
Needless to say, when you convert a variety of Win32 API pointers to the IntPtr type, some of that
documentation is lost. Generally, this means you’ll have to provide additional comments in the code.
Because you’re replicating a documented interface, function, or enumeration, you’ll want to avoid
changing the variable names. The help file provided with Visual Studio can still help the function user if
you maintain the same basic function name and argument names as part of your code.

Converting Variables to Visual Basic Types

Many of the same rules that you observe when converting a variable from the unmanaged environment to C#
also apply for Visual Basic. However, the actual details of the conversion will often take a different shape in
the two environments. For example, Visual Basic is more sensitive to numeric values than C# in that it uses
native numeric formats easier than those supplied in CLR. This sensitivity means that it’s easier to use an

Converting Variables to C# Types

25

Integer in Visual Basic than it is to use a UInt32. The Integer provides a generalized way to handle the data
type.

We’ll see as the book continues that there are other limitations when working with Visual Basic. For example,
you’ll find it difficult to use in many COM scenarios (see the section “Special Rules for COM” for details).
However, Visual Basic does offer a few features that C# doesn’t offer. The most important of these features is
that the interface is consistent and simple.

It isn’t always easy to tell when to use marshaling with C#. Although you could make the assumption that
marshaling is always required, you’ll find that making this assumption has certain negative affects, including
a performance hit. When working with Visual Basic, marshaling is generally required with all native types,
but never required with the IntPtr type.

Another problem that Visual Basic developers will learn about is that it doesn’t support the UInt types.
Unfortunately, the UInt types regularly appear in the Win32 API, so getting around this problem could prove
difficult. Generally, try to use an Int type in place of a UInt type if possible. If using an Int type isn’t possible,
you’ll need to write a conversion routine in the wrapper DLL.

Placement of certain variable types is also easier in Visual Basic. Enumerations and data structures always
appear at the same level as the class using them in the hierarchy. When working with C#, you have to consider
the placement of these elements as a separate issue because they can appear at the same level as the class or as
part of the class or even outside the current namespace.

Special Rules for COM

COM hasn’t gone away simply because the .NET Framework has appeared on the scene—most developers
will continue to use COM. Consequently, you’ll find that you need to create bridges between your .NET
application and COM. In most cases, the conversion is easy. The only time you’ll run into problems is when
you want your .NET application to appear as a component with special interfaces, such as those used for an
MMC snap−in. When you work in this environment, you need to recreate all of the required interfaces by
hand, which includes any required data structures, special variable types, and enumerations. We’ll see later in
the book that you’ll normally place this conversion code in a separate DLL for reuse.

Objects can prove troublesome to convert because of the way that the C language handles classes and
structures. Remember that classes and structures are somewhat interchangeable under C and that C views both
of them as reference types. .NET (and as a result C# and Visual Basic) views classes as reference types and
structures as value types. Consequently, conversion can prove difficult.

As a general rule of thumb, if the C library call defines the argument as an interface or other pure reference
type, you can use the Object data type in your code. On the other hand, if the C library defines the object as a
structure, you’ll need to replicate the structure in your code and then pass the structure to the calling routine.
In some cases, you’ll need to marshal the object to ensure that the C library views it correctly. For example, if
the object is an interface, then you’ll need to add the following attribute to your object definition:

[MarshalAs(UnmanagedType.Interface)]

As part of the data conversion process, you need to consider the direction of data travel between your
application and the C library. The C header files commonly mark arguments as [IN], [OUT], or [OUT][IN].
When working with values marked as [OUT], C# developers need to add the out (for uninitialized values) or
the ref (for initialized values) keyword to ensure that the application sees the return value. Any argument
marked as [OUT][IN] must use the ref keyword. Visual Basic developers will always use the ByRef keyword

Special Rules for COM

26

for [OUT] and [OUT][IN] values. When using a reference value, you must initialize the argument before you
pass it to the C library.

For C# developers, it’s important to differentiate between ref and out values. Remember that the application
must provide an initialized argument for ref values, but can include an uninitialized argument for out values.
While C# makes the distinction clear through the use of native keywords, you’ll find that other languages such
as Visual C++ aren’t quite as adept. For example, when working with Visual C++, you’ll find that a double
pointer will create a ref value, while the [Out] attribute is used to create an out value, as shown here. Notice
that out values begin as ref values because they also require a double pointer. Also notice that the [Out]
attribute is captialized—using the lowercase [out] attribute will result in errors.

// Create a ref value.
MMCHelper::IDataObject **ppDataObject

// Create an out value.
[Out]MMCHelper::IDataObject **ppDataObject

One final concern about Windows library calls is that they often use keywords for arguments. For example,
the Notify() method shown here normally uses event as one of the argument names.

virtual /* [helpstring] */ HRESULT Notify(
 /* [in] */ MMCHelper::IDataObject *lpDataObject,
 /* [in] */ MMCHelper::MMC_NOTIFY_TYPE *aevent,
 /* [in] */ IntPtr arg,
 /* [in] */ IntPtr param) = 0;

Notice that the source code changes the name to aevent. If you don’t make this change, the argument name
will appear in a decorated form within the managed environment. For example, C# decorates event as @event,
making the argument difficult to read.

Now we need to look at the bad news for Visual Basic developers. Even though the entire development
process is easier when working with Visual Basic, the lack of a distinct ref and out keyword causes problems
when working with C library calls. Figure 2.3 shows an imported library that we’ll work with later in the
book. Notice that this library includes interfaces and that the interfaces have a mix of ref and out keywords
associated with them. For example, GetDisplayInfo() includes a ref keyword, while CreateComponent()
includes an out keyword.

Figure 2.3: C# makes a distinction between ref and out keywords, which makes using wrapper DLLs possible.

Special Rules for COM

27

Figure 2.4: Visual Basic Developers will find it difficult to create interfaces in many cases.

Figure 2.4 shows the same imported library from the Visual Basic perspective. When Visual Basic imports the
library, it assumes that every argument is ByVal, not ByRef. It has problems figuring out the data types, in
some cases, and it also lacks the means to detect ref and out keyword conditions. Consequently, you’ll find it
difficult to make the COM wrapper library work in this situation.

The only way around this fatal scenario, in many cases, is to write the wrapper DLL only in Visual Basic.
This means you don’t have access to pointers, which means that many types of COM operations are
completely inaccessible to the Visual Basic developer. Does this mean you can’t use Visual Basic to access
the Win32 API? No, we’ve already seen that Visual Basic is quite capable of using the Win32 API in many
situations, but this demonstration shows that it’s less capable than C# when performing certain
Windows−specific tasks such as COM emulation.

Working with Data Structures

Generally, a data structure provides an organized container approach to transmitting a group of variables
between the client application and the Windows API. As with other variables, you normally have to perform
some type of data translation to ensure that the data is usable by both the managed environment and Windows.
However, you now have other constraints to consider. The most important consideration is the presentation of
the data to Windows. While the managed environment accesses the data by variable name, Windows often
accesses it by relative position within the data structure, which means the format of the data structure is
crucial.

Fortunately, the [StructLayout] attribute provides a way around the problem of structure layout. This attribute
enables you to specify a layout for your structure. For example, you can tell Windows that the layout has to be
sequential, which means it will appear in precisely the same order you specify as part of the structure
definition. However, the [StructLayout] attribute only affects the layout of the structure—you still have to
provide the proper variables. Creating a structure with a UInt16 where you need a UInt32 will still result in
failure.

Generally, you’ll want to create the structures where they fit best. For example, if you need to create a
structure for a function in a wrapper DLL, then place the structure in the wrapper DLL, not with the
application accessing the function. There are exceptions to every rule, however. You might need to create a
special version of a structure for some Windows API function calls when working in Visual Basic. The key is
the use of pointers in the structure. Data structures that contain pointers usually present problems for Visual
Basic viewers—the result is similar to that shown in Figure 2.4. You’ll see the variable name, but Visual
Basic will be unable to resolve the data type.

Sometimes you can’t easily convert a C library data structure into something that works well within Visual
Basic or C#. In this case, use Visual C++ to create a wrapper DLL that contains both the data structure and the

Working with Data Structures

28

associated function call. This technique is especially important when working with data structures that contain
a lot of C data types that don’t convert well to managed data types. Make sure you create a managed data
structure—it’s possible to create both managed and unmanaged code in Visual C++, which gives it an
advantage when working with this type of code. Ultimately the content of the structure must break down into
types that C# and Visual Basic will understand as shown in the following code.

[StructLayout(LayoutKind::Sequential)]
public __gc struct DVTARGETDEVICE
{
public:
 UInt32 tdSize;
 short tdDriverNameOffset;
 short tdDeviceNameOffset;
 short tdPortNameOffset;
 short tdExtDevmodeOffset;
 char tdData;
};

Notice that the structure relies on native Visual C++ types, in many cases, because these types translate well
into standard .NET Framework types. However, there are some situations when a native Visual C++ type
could cause problems, as in the case of an unsigned integer (UINT). In this case, make sure you use the .NET
Framework equivalent type directly (UInt32).

There are other problems to consider when working with structures. For example, a structure must include the
[StructLayout] attribute so CLR knows how to work with the data it contains. Generally, you’ll use the
LayoutKind::Sequential argument for Windows function calls. This value ensures that CLR doesn’t rearrange
or optimize the structure in any way. Note that Visual C++ requires the use of the __gc keyword for managed
structures and that you must make all of the data elements public so they appear within the managed
environment.

Structures become problematic in some situations. For example, you’ll find that some structures contain other
structures. The level of nesting can become absurd in some situations. In those cases, you need to determine if
the level of nesting is warranted. If not, you can usually provide a substitute value. For example, if the code
you create will never pass the structure to Windows (in other words, the structure is always passed as a NULL
value), you can normally use an int as a substitute for the structure. Make sure you document any deviations
within the DLL source code and as part of the DLL documentation.

Note Don’t worry if you don’t quite grasp all of the nuances of this next example—we’ll spend more time
discussing wrapper DLLs in Chapter 3. The sole purpose of this next example is to show you that it’s
possible to create the structures that Win32 API calls require outside of the base programming
environment. This is an especially important technique when the data structure contains unions or other
complexities that you can’t duplicate in the managed environment.

Finally, there are some extreme cases when you can use the ability of Visual C++ to work with both managed
and unmanaged code to your advantage. Create a function within Visual C++ that accepts all of the data
required to create the data structure in question, then create that data structure within the Visual C++ code.
Make sure you change the Win32 API function call definition to match the new setup. Listing 2.2 is an
example of such a construction technique. (You’ll find this example in the \Chapter 02\C#\SampleLib folder
of the CD.)

Listing 2.2: A Technique for Creating Data Structures Externally

// Creates a typical data structure.

Working with Data Structures

29

void CreateDVTargetDevice(IntPtr* StructOut,
 Int16 tdDriverNameOffset,
 Int16 tdDeviceNameOffset,
 Int16 tdPortNameOffset,
 Int16 tdExtDevmodeOffset,
 Char tdData,
 Int32 tdSize)

{
 DVTARGETDEVICE *Output; // Ouput value.
 void* lpData = malloc(sizeof(DVTARGETDEVICE));

 // Allocate memory for the return data.
 Output = (DVTARGETDEVICE*)lpData;

 // Fill the data structure. Note the use of boxing and
 // data conversion for tdData.
 __box Char* tdDataBoxed = __box(tdData);
 Output−>tdData[0] = tdDataBoxed−>ToByte(NULL);
 Output−>tdDeviceNameOffset = tdDeviceNameOffset;
 Output−>tdDriverNameOffset = tdDriverNameOffset;
 Output−>tdExtDevmodeOffset = tdExtDevmodeOffset;
 Output−>tdPortNameOffset = tdPortNameOffset;
 Output−>tdSize = tdSize;

 // Return the structure as a pointer.
 *StructOut = IntPtr(lpData);
}

As you can see, the output of this function is an IntPtr, which makes it easy to use with any of the .NET
programming languages. The code has to allocate a local pointer in order to provide a place for data output.
However, placing data within a void* doesn’t work particularly well, so you need to assign that memory to a
local copy of the data structure in question. Notice that you might have to perform some data conversion. For
example, this data structure requires that you box the tdData value, convert it to a Char, and finally place it
within the data structure.

The wrapper DLL also includes a conversion function that accepts the IntPtr as input, converts it to a string,
and enables the calling application to display the data on screen. You’d never do this in a real application, but
it’s important to see how the IntPtr concept works and this is the easiest way to demonstrate it. You’ll find the
test application in the \Chapter 02\C#\SampleLibraryTest and the \Chapter 02\VB\SampleLibraryTest folders.
Listing 2.3 shows the important test code.

Listing 2.3: A Test Program for the External Structure

private void btnTest_Click(object sender, System.EventArgs e)
{
 CreateStructs NewStruct; // Create Structure Object.
 IntPtr ResultPtr; // IntPtr Containing Structure.
 String ResultStr; // String Containing Original Data

 // Initialize the data objects.
 NewStruct = new CreateStructs();
 ResultPtr = new IntPtr(0);

 // Create the new structure.
 NewStruct.CreateDVTargetDevice(ref ResultPtr, 1, 2, 3, 4, ‘a’, 16);

Working with Data Structures

30

 // Create a string from the new structure.
 ResultStr = NewStruct.ReturnDVTargetDevice(ResultPtr);

 // Make sure you free the unmanaged memory.
 NewStruct.FreePointer(ResultPtr);

 // Display the application output.
 MessageBox.Show(ResultStr,
 "Structure Output",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
}

Notice that the CreateDVTargetDevice() function accepts the structure values as single inputs—negating the
requirement to work with the data structure within the managed environment. The function returns an IntPtr
that you can pass to Win32 API functions as needed. As noted in the source code comments, make sure you
free the unmanaged memory pointer before the application exits, or the application will have a memory leak.
Figure 2.5 shows the output from this example.

Figure 2.5: This example shows that it’s possible to create data structures outside the managed environment.

You might wonder how well Visual Basic works with this particular application since it still requires a
pointer. A look at the Object Browser (shown in Figure 2.6) shows that this wrapper DLL doesn’t present any
problems. Visual Basic correctly interprets the pointer as a ByRef reference. In short, this technique is the
perfect way to get around many of the problems of working with Visual Basic and the Win32 API.

Figure 2.6: The technique shown in this section overcomes many of the problems Visual Basic has with
pointers.

Working with Data Structures

31

Working with Pointers

As you’ve already seen in other areas of this chapter, pointers can present problems for both Visual Basic and
C# developers. However, this is one area where C# developers have a decided advantage and you might find
that it’s better to use C# whenever you have a lot of pointers to work with. Even if Visual Basic is the main
language for your application, you can write a wrapper DLL in C# to meet the requirements of the Win32 API
call portion of the code. Generally, anywhere you need to use a UInt value or an odd pointer, you’ll also need
to use C#.

The IntPtr is the developer’s best friend when it comes to pointers. However, remember that an IntPtr contains
a void*, not the specialized pointers that Win32 API calls rely on. As shown in Listing 2.2, the use of a void*
normally means some type of data conversion later in the process. The whole concept of a void* is to
represent a pointer of an unknown type. In sum, an IntPtr enables you to create generic pointers, but not
specific pointers.

C# developers also have access to standard C−like pointers. However, to use this feature you must declare the
affected method as unsafe. As discussed in the “Understanding the Effects of Unsafe Code” section of
Chapter 1, you want to minimize unsafe code sections for a number of reasons. The most important reason is
that unsafe code sections don’t receive the same level of error checking that normal code sections do, which
means that your code is more likely to contain hidden (and difficult to debug) errors. Here are some general
rules for using normal pointers.

Use an IntPtr whenever possible.•
Keep sections with standard pointers small.•
Perform more error checking than normal.•
Include range checks of all data to ensure that it remains within limits.•
Isolate unsafe code sections from the main application whenever possible.•
Consider using Visual C++ for large numbers of pointers.•
Avoid using pointers by substituting managed alternatives.•

Working with Enumerations

Windows relies extensively on enumerated data types. These data types normally begin with the enum
keyword. However, as you’ll notice in Listing 2.1, duplicating a Windows enumerated type with a managed
enumeration is difficult. You can always use an enumeration for return values from a Windows API call, but
you can’t always use it as input. The exception is when the enumerated type will appear singly and not as part
of an or−ed or and−ed input.

The MessageBoxEx() function provides a perfect example of the enumerated type problem because you can’t
use an enumeration to create the input required by the function. In these cases, you need to create a class
consisting entirely of constants. Note that there are differences between Visual Basic and C# when working
with the class form of an enumeration. When you work with C#, you can declare the type of the constant. For
example, in the MessageBoxEx() example, all of the constants are of the UInt32 type because that’s what the
function requires. Visual Basic doesn’t allow this distinction and it can cause problems. For example, here’s
_the Visual Basic version of the MBButton class.

 ‘ Create a list of buttons.
Public Class MBButton
 Public Const MB_OK = &H0
 Public Const MB_OKCANCEL = &H1

Working with Pointers

32

 Public Const MB_ABORTRETRYIGNORE = &H2
 Public Const MB_YESNOCANCEL = &H3
 Public Const MB_YESNO = &H4
 Public Const MB_RETRYCANCEL = &H5
 Public Const MB_CANCELTRYCONTINUE = &H6
 Public Const MB_HELP = &H4000
End Class

Tip Notice the use of hexadecimal numbers in the MBButton class. It’s usually easier to present the numbers
in this form than use decimal equivalents. The Win32 API documentation normally relies on hexadecimal
number input, rather than decimal numbers, so using hexadecimal numbers makes your code easier to
debug.

In some cases, working with enumerations and classes becomes so difficult that you might want to define the
enumeration as a series of defines or constant values. In fact, the C header files often use this technique when
creating an enumeration would prove too complex. Looking into the C header file will often provide you with
clues as to the correct enumeration representation in your own code.

Enumerations become even more difficult when working with wrapper DLLs—a topic we’ll discuss at length
in Chapter 3. The most important reason is that the enum will never appear in the Object Browser and the
wrapper DLL user won’t be able to access it. Consequently, you need an alternative for creating enumerated
types. In most cases, using a class is the best answer because you have good control over how the class will
appear to the end user. However, many situations will call for use of defines or constants in wrapper DLLs.

Importing Resources

Resource usage is an important part of any development project. You manage memory, disk space, and other
physical resource elements as part of the development project. In addition, most developers are used to finding
icons and other graphic resources embedded within DLLs found in the Windows directory. Finally, resources
can be code—the embodiment of executable code within an external DLL is a type of resource that most
developers are used to having.

We’ll discuss resources in a number of places in the book. This section discusses three main issues. First, it
tells you how the .NET Framework can help you manage resources located in external files, such as the
graphic images located in the Shell32.DLL file. Second, we discuss the issue of using external DLLs from
your managed code. Finally, we’ll take a quick look at some of the issues involved in using resources with the
Win32 API.

Understanding .NET Framework Functionality

While this book isn’t about general C# or Visual Basic programming, it’s important to remember that the
.NET Framework does provide the functionality required to display basic graphics. For example, you can
embed a bitmap within your application and display it on screen as needed. You’ll find such an application in
the \Chapter 02\C#\NETBitmap and the \Chapter 02\VB\NETBitmap folders of the CD. Here’s the basic code
needed to perform the task.

private void btnTest_Click(object sender, System.EventArgs e)
{
 // Retrieve an embedded bitmap from the current assembly.
 Assembly Asm = Assembly.GetExecutingAssembly();
 Stream Strm = Asm.GetManifestResourceStream("NETBitmap.Main.bmp");
 Bitmap Temp = new Bitmap(Strm);

Importing Resources

33

 // Display the bitmap on screen.
 pbMain.Image = (Image)Temp;
}

As you can see, this example relies on reflection to get the job done. You must set the Build Action property
of the bitmap or other resource to Embedded Resource to use this technique. Figure 2.7 shows the output from
this example.

Figure 2.7: Displaying an embedded bitmap within your .NET application is fine for the managed
environment.

The resulting bitmap works fine within the managed environment but won’t work within the Win32 API,
which means you have to use a different technique when making a Win32 API call. The Win32 API doesn’t
understand the managed resources created by reflection. Fortunately, you can use the special GetHbitmap()
call to answer many Win32 API call needs.

The hBitmap this call returns is Windows compatible. You must make a call to the Win32 API DeleteObject()
function to deallocate the handle when you finish using it. Here’s the declaration for the DeleteObject()
function.

[DllImport("gdi32.dll")]
public static extern int DeleteObject(IntPtr hObject);

Using the IDE Features

You’ll find that you need to use wrapper DLLs regularly when creating connections between the .NET
Framework and the Win32 API. Using wrapper DLLs enhances code reuse and enables you to use other
languages as needed. Of course, this means adding a reference to the external DLL so that you can access the
code it contains from within your application. The following steps tell how to add such a reference (the same
procedure works whether you use Visual Basic or C#).

Right−click the References folder in Solution Explorer and choose Add Reference from the context
menu. You’ll see an Add Reference dialog box similar to the one shown in Figure 2.8. Notice that
there are separate tabs for .NET, COM, and Project related references. Generally, you won’t find
custom DLLs on any of these tabs, but it always pays to look.

1.

Using the IDE Features

34

Figure 2.8: The Add Reference dialog box enables you to add custom _references to your application.
Locate and select the reference you want to add to your application. Add the reference to the Selected
Components list by highlighting it and clicking Select. If you don’t see the DLL, you’ll need to add it
manually as described in Step 3. Otherwise, you can skip Step 3 and proceed to Step 4.

2.

Click Browse and you’ll see a Select Component dialog box. Use this dialog box as you would any
file open dialog box to locate the file containing the executable code. Once you locate the file,
highlight it and click Open.

3.

Click OK. You should see the new reference added to the Reference folder.4.
Add a statement to use the new reference to your application. For C# developers this means adding a
using statement to the beginning of the file. For Visual Basic developers this means adding an Imports
statement to the beginning of the file.

5.

Working with the Win32 API

Working directly with the Win32 API means locating the various functions you need—they’re not all in the
same DLL. In many cases, you’ll need to perform esoteric tasks such as gaining access to the current
application instance using the Marshal.GetHINSTANCE() method. You’ll also need to know how to gain
access to the current application handle using this.Handle. However, in many cases, it’s a matter of
performing straight coding as shown here.

[DllImport("user32.dll")]
public static extern IntPtr LoadBitmap(IntPtr hInstance,
 [MarshalAs(UnmanagedType.LPStr)]String lpBitmapName);

[DllImport("gdi32.dll")]
public static extern int DeleteObject(IntPtr hObject);

private void btnTest_Click(object sender, System.EventArgs e)
{
 IntPtr HBitmap; // A handle to a bitmap.

 // Load the bitmap using a Windows call.
 HBitmap = LoadBitmap(IntPtr.Zero, "D:\\Main.bmp");

 // Display the bitmap on screen.
 pbMain.Image = Image.FromHbitmap(HBitmap);

 // Delete the hBitmap.
 DeleteObject(HBitmap);

Working with the Win32 API

35

}

This code represents an alternative way to load a bitmap from disk. Essentially all you need to do is load the
bitmap, convert it to an image, and then release memory used by the bitmap. The tricky part is setting
everything up so that Windows understands what you want to do. Once you have the required function calls in
place, using the Win32 API calls is about as difficult as using their .NET Framework equivalents. We’ll
explore the various elements of working with graphics as the book progresses—especially when it comes time
to create the MMC snap−in example.

Where Do You Go from Here?

This chapter has demonstrated one of the basic principles of using the Win32 API from the managed
environment—data translation. The managed and unmanaged environments only work together when the data
they share is formatted correctly. In some situations, you can perform a direct data transfer; but, in other cases,
you have to marshal the data or get creative and construct the data using other techniques.

At this point, you have seen enough examples to begin writing some code yourself. You should try creating a
few examples that translate data that you need to work with to and from the unmanaged environment. It’s
important to start small, as we did with the MessageBoxEx() example. You’ll find that the debugger is lacking
when it comes to this type of application programming, so you have to know how a data translation will affect
your application and the Win32 API calls that it makes.

In Chapter 3, we’ll move on to more complex topics. We’ll discuss various types of Win32 API access. For
example, that chapter is the first place you’ll learn about using wrapper DLLs to access some Win32 API
functions. You’ll also learn how to access and interpret Win32 API function call return values. Finally, this
chapter looks at some important tools that you’ll need to develop robust applications. Some tools like Spy++
are indispensable when researching the actual behavior of some poorly documented Win32 API functions or
diagnosing errors in a function call.

Where Do You Go from Here?

36

Chapter 3: Accessing the Win32 API

Overview

So far we’ve discussed the perimeter of Win32 API development. You’ve learned about some of the
functionality that the Win32 API can provide, and we’ve considered various aspects of data manipulation.
However, we haven’t really discussed access techniques for the Win32 API. That’s what you’ll learn in this
chapter.

There are four topics of interest for developers in this chapter. First, you need to know where to find the
Win32 API calls because they don’t all reside in the same DLL and some don’t reside properly in DLLs at
all—they appear as part of C LIB files. Second, you need to know what you’re giving up by using the Win32
API calls. We’ve already talked about a few of these issues in previous chapters. Third, you need to know
which tools are available to help you locate and observe the effects of Win32 API calls. Finally, you need to
know how to obtain error information when working with Win32 API calls and how to interpret the error
codes.

Consider this chapter your doorway to the technology−specific chapters that begin with Chapter 6. This
chapter contains the generic techniques that we’ll use in later chapters to answer specific technology
needs—the holes left in the .NET Framework’s coverage of the Win32 API. When you complete this chapter,
you’ll have the basic skills for locating functions, analyzing how they work, and calling them from your
managed application. However, anyone who’s worked with the Win32 API directly in the past knows that it’s
anything but consistent, which is why these technology−specific chapters are so important. This chapter tells
you the basic rules—the remaining chapters tell you how Microsoft broke them. They’ll also show you
techniques for getting around some of the anomalies in the Win32 API when viewed from the managed
environment.

An Overview of the DLLs

The Windows operating system is composed of more than a few DLLs. If you look in the System32 folder of
any Windows installation, you’ll see a wealth of DLLs, many with strange−looking names. Most of these
DLLs perform special tasks, and you won’t need to worry about them unless you need to perform that special
task in your application. For example, my System32 folder contains a VJOY.DLL file that I’d only need to
use when working with a joystick—something I’m probably not going to do any time soon. Some of the DLLs
are also device specific, so you don’t need to do anything with them unless you want to work with that device
in a very specific way (which usually isn’t a good idea).

This excess of DLLs leaves the question of which DLLs you need to consider open to interpretation. There are
some DLLs that you’ll never use simply because you don’t write applications that require their services or the
services they provide are found somewhere in the .NET Framework. It’s important to know which DLLs to
look for in your search of a specific function.

Note The help file provided with Visual Studio .NET lacks some of the documentation you’ll need to
understand the Win32 API. Unfortunately, this means you’ll need to download a copy of the Platform
SDK to gain access to the required help files. Fortunately, Visual Studio .NET does include a complete
set of C header files and all of the tools you need to work with the Win32 API. You can obtain a copy of
the latest Platform SDK at
http://msdn.microsoft.com/library/default.asp?url=/library/en−us/sdkintro/sdkmainportal_71ut.asp. You

37

can also obtain the required information from the help files that are provided with an MSDN
subscription.

There are three main DLLs you’ll need to use for general functions: USER32.DLL, KERNEL32.DLL, and
GDI32.DLL. In general, USER32.DLL contains user−specific functions such as message boxes. You’ll find
low−level functions such as those used for memory allocation and thread management in KERNEL32.DLL.
Most graphics functions appear in GDI32.DLL. Unfortunately, Microsoft didn’t strictly adhere to these
boundaries. For example, you’ll find the Beep() function in KERNEL32.DLL, not USER32.DLL as you
might expect. Because the Platform SDK documentation is written with C/C++ developers in mind, it doesn’t
always list the DLL where you can find a particular function—making the search akin to an egg hunt.

Some DLLs fall into the common category, but the .NET Framework already provides good coverage of the
functionality they provide. For example, the COMCTL32.DLL and COMDLG32.DLL files contain functions
that developers use frequently, but most of these functions have .NET Framework equivalents. The question
for most developers will be whether the .NET Framework equivalents are robust enough to meet application
development needs. As shown in the MessageBoxEx() example in Chapter 2, Microsoft tends to leave out
special features in .NET Framework equivalents. For example, the MessageBox.Show() function doesn’t
include the Help button. Likewise, you might find some special feature COMCTL32.DLL and
COMDLG32.DLL files that the .NET Framework doesn’t implement.

Many of the DLLs you’ll use fall into the esoteric category. For example, you’ll find the BATMETER.DLL
and POWRPROF.DLL files helpful when writing power management code. While the .NET Framework
provides access to common needs such as power events, you might find some of the DLL functions useful for
power monitoring needs. Of course, most applications that do provide power management support do so by
monitoring the events and leaving the grunt work to the operating system, so these functions, while useful, are
also esoteric.

We’ll discuss many other DLLs as the book progresses. The purpose of this section is to help you understand
where these Win32 API functions are coming from—they don’t appear out of the air as some developers
might suspect. Even if you restrict your programming efforts to the functions found in the three main DLLs,
you’ll find that you can patch quite a few of the obvious support holes in the .NET Framework.

Types of Win32 Access

There are two ways to access the Win32 API functions. All of the examples we’ve looked at so far in the book
use a single type of access, the direct DLL approach. In most cases, you’ll want to use this approach because
it’s the simplest method to use. However, in other situations, you’ll need to use the C LIB file approach due to
a lack of documentation of other factors. Sometimes even C# can’t bridge the gap between the managed and
unmanaged environments, making Visual C++ the language of choice. The following sections describe these
two methods of Win32 API access in more detail.

Tip Working with the Win32 API often means you’ll need to access low−level details about your application
such as the window handle or the device context. Visual Basic hides this information by default. To see
low−level details about your application within the development environment, use the Tools Ø Options
command to display the Options dialog box. Select the Text Editor\Basic folder. Clear the Hide Advanced
Members option and click OK. You’ll now see features such as Me.Handle (the handle for the current
window). The C# text editor also has the Hide Advanced Members option, but it’s usually cleared by
default.

Types of Win32 Access

38

Direct DLL Access

As previously mentioned, you’ll generally want to use direct DLL access when using Win32 API functions.
This technique enjoys the greatest level of support from the .NET Framework. For example, you can use the
[DllImport] attribute to gain access to the required function. We haven’t looked at all of the features of the
[DllImport] attribute yet, so you’ll gain a better appreciation of just how valuable this attribute is as the book
progresses. We’ve also looked at other attributes, such as the [StructLayout] attribute, that helps make DLL
access easy.

Of course, the use of DLL access assumes that you know which DLL to access and have documentation about
function arguments. The arguments could be anything from pointers to data structures. Learning the names of
functions within a DLL isn’t hard (we’ll see how this works in the “Dependency Walker” section of the
chapter), but learning the details can prove frustrating.

There’s a hidden problem with the DLL access method. Every time your application makes a transition from
the managed to unmanaged environment, CLR has to marshal the variables in the background (this is in
addition to any marshaling you perform manually within the application). Consequently, there’s a
performance hit your application will experience when using the Win32 API. Sometimes it’s more efficient to
use a wrapper DLL or a function substitute, rather than incur the performance penalty.

Direct DLL access can present other problems as well. For example, some of the structures used to access
Win32 API functions include unions, odd variable types, and other data translation problems. Because C# and
Visual Basic don’t understand these concepts, you’ll end up ripping your hair out trying to replicate the data
structure. In these cases, it’s often easier to bypass the data translation problem by using a C/C++ wrapper
DLL. Since managed Visual C++ .NET understands the unmanaged environment completely, you’ll
experience less frustration in the data translation process. Be warned, though, that Visual C++ presents other
challenges such as a more complex programming environment.

Even if you can replicate a data structure, it often bears little resemblance to the original. For example,
consider the following unmanaged data structure.

struct MyStruct
{
 int data[16];
}

This looks like an easy structure to replicate, and in some ways it is. However, the resulting data structure
doesn’t look like the original and could cause problems for other developers trying to learn about your code.
Here’s the C# equivalent of the data structure in question.

[StructLayout(LayoutKind.Sequential)]
public struct MyStruct
{
 [MarshalAs(UnmanagedType.ByValArray, SizeConst=64)]
 public int[] myField;
}

While the two data structures are equivalent, the C# version requires two attributes to accomplish the same
task that the Visual C++ version does without any attributes at all. In short, the C# version is actually more
complicated. When you consider that this structure is actually very simple, it’s not too hard to image how
some of the complex data structures will appear within managed code. The realities of developing Win32 API
code in a managed environment include added complexity because the managed environment makes

Direct DLL Access

39

assumptions that the Win32 API environment doesn’t make.

A final direct DLL access concern is the problem of error handling. You must also import and use the rather
strange error−handling functions employed by the Win32 API if you want to provide error feedback to the
user. While you still have to figure out which method of error handling to use with working with Visual C++,
the actual process of retrieving the error information is easier. Fortunately, error handling isn’t so difficult that
it prevents you from using the direct DLL method.

C LIB Access

For some developers, the concept of DLL versus LIB function access might prove confusing at first, but the
differences between the two methods are distinct and easy to understand. A C/C++ library is a set of
precompiled routines that are only accessible from a C/C++ environment. As such, the files have a LIB
extension and usually reside in a separate LIB folder on the hard drive.

When you view the documentation for the Win32 API and see a reference for a LIB rather than a DLL file,
you’re seeing Microsoft’s choice of C/C++ as the base language for Windows. The presence of a LIB file
reference in the documentation doesn’t necessarily mean there’s no access from a DLL, but you’ll have to do
some research to find the name of the associated DLL (when there’s a single DLL that implements the
required function). In some cases, the answer to the question of which DLL to use is quite simple. For
example, the MessageBoxEx() function we used in Chapter 2 relies on User32.LIB in the documentation and
User32.DLL in the example.

The following sections discuss two forms of C library access. You’ll find examples of these two techniques in
the “A C LIB Wrappers Access Example” and “A C LIB Substitute Functions Example” sections of the
chapter. You’ll rely on both forms of C library access from time to time. Of the two, the wrapper technique is
the most common, so we discuss it first. The substitute technique is actually better when you can implement it
without loss of functionality.

Using Wrappers

The most common use of a wrapper is when a managed application can’t fully duplicate the inputs required by
a C library routine or when the output from such a routine contains elements the managed application can’t
understand. A common example of this problem is when a data structure contains unions or other elements
that are difficult to recreate in the managed environment. In some cases, it’s possible to create the data
structure but not locate the required call within a DLL. If a function exists only within a C library, then you
must use a wrapper to access it.

It’s important to use a wrapper DLL with care for several reasons. The most important reason is that you’re
adding another layer to the calling mechanism, which increases the probability of error and increases the
complexity of debugging the resulting application. Another good reason to avoid using wrapper DLLs is the
complexity of using multiple languages within the application. Low−level programming with Visual C++
requires a good understanding of both C++ and the Win32 API. Many developers will want to use C# or
Visual Basic as their main programming language—using Visual C++ to create a wrapper DLL might require
more time than a project allows.

A few developers have also complained of language compatibility problems when working with Visual C++.
In many cases, the problem is one of not understanding how the interfaces should work, rather than an actual
flaw in the interface. However, these errors only serve to point out the complexity of the problem—many of
these developers are seasoned programmers who have worked with Visual C++ for several years. We’ll
discuss some of these interoperability problems as the book progresses, especially when we discuss the MMC

C LIB Access

40

snap−in example.

For all of the problems of using the wrapper DLL technique, there are quite a few advantages. The best
advantage is that you’re working with the Win32 API using a language that’s designed to interact with it. All
of the documentation Microsoft provides assumes that you’re going to use Visual C++ for this type of coding.

Another advantage is speed. Performing all Win32 API calls in an unmanaged black box and simply sending
the result to the managed application results in fewer housekeeping tasks such as marshaling data. In addition,
Visual C++ tends to provide an efficient coding environment—one where you can closely monitor the use of
resources and decrease the number of steps required to perform any given task. While you might not always
notice the speed difference in a small application, using a wrapper DLL does include a performance advantage
in most cases.

Using Substitute Functions

It isn’t very often that you can find a substitute for a Win32 API call if that substitute doesn’t appear within
the .NET Framework. However, there are times when it’s possible to duplicate a behavior if you’re willing to
accept a few compromises. For example, there’s a way to add the Windows XP theme appearance to your
application without making special Win32 API calls. However, the substitute technique leaves some vestiges
of older programming techniques in place, such as any owner−drawn icons. The only way to make your
application completely compatible with Windows XP is to use Win32 API calls.

Of course, the biggest problem with the substitute function technique is finding it. A substitute function is
normally a non−obvious way of performing a task. These are the types of techniques that developers share
only with friends. In some cases, you’ll find the techniques on the pages of higher−end magazines that only
expert developers would attempt to read. In short, the substitute function technique is of limited help. Yes,
you should always look for a way to avoid using a wrapper DLL, but it simply isn’t possible to do so in all
situations.

Hidden Functions

Sometimes a function that’s relatively easy to learn about for the Win32 API is hidden within the .NET
Framework. One such example is the GetDC() function, which retrieves the device context for the current
window. This call is used fairly often in the unmanaged world because it represents the only way to draw
something on screen. Visual Studio .NET provides rudimentary graphics in an easy−to−use package that
doesn’t rely on the developer to provide a device context, so knowing how to obtain the device context would
seem superfluous until you need it to make a Win32 API call. Here’s what you need to do to obtain the device
context using managed code.

IntPtr hDC; // A handle for the device context.
Graphics g; // A graphics object.

// Create a graphic object from the form.
g = this.CreateGraphics();

// Obtain the device context from the graphics object.
hDC = g.GetHdc();

As you can see, this technique isn’t nearly as easy as making a simple GetDC() function call from the Win32
API. However, it does avoid some of the performance penalties of making the GetDC() call. The right choice
of technique for your application depends on how you plan to use the device context once you have it. If you

C LIB Access

41

plan to make calls using the Win32 API anyway, it might be just as easy to pass the window handle to the
Win32 API call routine and ask it to grab the device context. However, if you’re planning on staying mainly
in the managed environment, then the technique shown here will work best.

A Direct DLL Access Example

We’ve already viewed a number of direct DLL examples in the book. All of the examples so far are for
function calls that stand alone—they produce some final result on their own. However, there are a number of
useful Win32 API functions that aren’t really stand−alone—they’re an intermediary for some other task. For
example, the SendMessage() function found in User32 .DLL falls into this category. You use SendMessage()
to ask some other part of the system (including other parts of your application) to do something. We’ll cover
this topic in a lot more detail in Chapter 4, so consider the example in this section a taste of things to come.

Note When working with most Win32 API structures and COM interfaces, you need to consider the level of
exposure. All structure and interface elements are public by default. Consequently, attempting to create a
private structure or interface element can have strange side effects—if the code works at all.

Every part of Windows relies on messages. In fact, the message forms the basis of all communication and
your application must know how to both send and receive messages. For the most part, the mechanics of
sending and receiving messages are hidden within various event handlers. The message processing occurs at a
lower level.

The screensaver also relies on messages to perform various tasks. For example, you can create an application
that outputs a message to the screensaver and tells it to start hiding the screen. While the .NET Framework
provides access to the screensaver settings through the Microsoft.Win32.UserPreferenceCategory
enumeration, it doesn’t provide any means for turning the screensaver on or off. The example in this section
shows how to perform that task. You’ll find the source code for this example in the \Chapter
03\C#\ScreenSaver and \Chapter 03\VB\ScreenSaver folders of the CD. Listing 3.1 shows the code you’ll
need.

Listing 3.1: Use SendMessage() to Turn the Screensaver On or Off

// Used to send a message that starts the screen saver.
[DllImport("User32.DLL")]
public static extern int SendMessage(IntPtr hWnd,
 UInt32 Msg,
 Int32 wParam,
 Int32 lParam);

// Two constants we need to activate the screensaver:
// message type and message content.
public const Int32 WM_SYSCOMMAND = 0x112;
public const Int32 SC_SCREENSAVE = 0xF140;

private void btnTest_Click(object sender, System.EventArgs e)
{
 // Start the screen saver.
 SendMessage(this.Handle, WM_SYSCOMMAND, SC_SCREENSAVE, 0);
}

A Direct DLL Access Example

42

The example code relies on the SendMessage() function to send a system command to the screensaver. As
shown in the call, you need to provide a handle to the current application as part of the input. The
WM_SYSCOMMAND constant is the message—it tells Windows that you’re sending a system command. The
SC_SCREENSAVE constant is the act that you want the system to perform—turn on the screensaver.

Some of you might wonder how the Visual Basic application handles the UInt32 Msg argument. If you’ll
remember from previous discussions that unsigned integers aren’t part of the specification, the requirement to
use a UInt32 in this case could cause problems. Fortunately, you can get around this problem by using the
System.Convert.ToUInt32() method. Here’s the Visual Basic version of the SendMessage() call.

SendMessage(Me.Handle,
 Convert.ToUInt32(WM_SYSCOMMAND),
 SC_SCREENSAVE,
 0)

While this technique does work, it’s still better to use integers whenever possible to eliminate the overhead of
the conversion. The use of the System.Convert.ToUInt32() method depends on whether the purity of the call
or performance requirements takes precedence. In many cases, you’ll find that you can use an integer without
ill effect.

Tip You can avoid a myriad of .NET to unmanaged DLL memory problems by writing the DLL in such a way
that it allocates and frees its own memory whenever possible. In some cases, this means writing a separate
function to free the unmanaged memory. If you can’t avoid allocating memory within the managed client,
make sure you marshal the affected variables properly so that the unmanaged DLL receives a pointer to
the managed memory. Otherwise, the call will fail with odd error messages (when the failure allows you
to access the error message—sometimes it will simply cause Windows to stop application execution).

A C LIB Wrappers Access Example

There are many times when you’ll need to write a wrapper DLL to gain access to a Win32 API call. We’ve
discussed many of the scenarios for using this technique earlier in the chapter, so let’s look at the example.

You’ll run into more than a few situations when you must gain access to one or more types of security
information that the .NET Framework doesn’t provide. For example, you might need to know the security
information for the local user. Unfortunately, the functions required to access those security features reside in
one or more C libraries such as ADVAPI32.LIB. This file is only accessible from within a C application.

The example application shows how to get around this problem. You need to build a separate managed Visual
C++ DLL that handles access to the library in question, then access the DLL function from within your
application. The first step is to create the required projects. Make sure you add a reference to the Visual C++
DLL in your C# or Visual Basic project’s References folder. You’ll also need to add a using statement for the
Visual C++ DLL at the beginning of your C# or Visual Basic application. The example found in the \Chapter
03\ C#\AccessToken and \Chapter 03\VB\AccessToken folders of the source code CD will provide you with
the details of this setup.

Note The examples in this section assume a familiarity with underlying security
concepts such as the use of the Security Access Control List (SACL) and
Discretionary Access Control List (DACL). We’ll discuss issues regarding the
Access Control Entries (ACEs) and you’ll learn how to manage access tokens. If
you aren’t familiar with these topics, make sure you read the security theory

A C LIB Wrappers Access Example

43

sections of the help files starting with “Windows NT Security in Theory and
Practice”
(ms−help://MS.VSCC/MS.MSDNVS/dnwbgen/html/msdn_seccpp.htm). The
help file has a four−part theory section that will tell you everything you need to
understand the examples.

There are a number of ways to create a connection between a C library and your C# application. In some
cases, you can create a one−for−one set of function calls. For example, this works well when you want to call
the console library routines because they don’t exchange pointers—just data. However, the security API calls
are a little more complicated, so you’ll find that you need to perform a little more work to create the interface.
Listing 3.2 shows the Visual C++ DLL code. Remember, this is a managed DLL, so you have access to both
managed and unmanaged functionality—a real plus in this situation. You’ll find the source code for the
wrapper DLL in the \Chapter 03\C#\AccessToken\SecurityAPI of the CD.

Listing 3.2: The Visual C++ DLL Code for User Security Access

// Obtain the size of the data structure for a particular
// token information class.
int GetTokenSize(TOKEN_INFORMATION_CLASS TIC,
 IntPtr *ReturnLength)
{
 HANDLE TokenHandle = NULL; // Handle to the process token.
 DWORD RL = 0; // Return Length.
 HRESULT hr = 0; // Operation Result Value.

 // Obtain a handle for the current process token.
 hr = OpenProcessToken(GetCurrentProcess(),
 TOKEN_QUERY,
 &TokenHandle);

 // Obtain the size of the token for the desired
 // token information class.
 hr = GetTokenInformation(TokenHandle,
 TIC,
 NULL,
 0,
 &RL);

 // Return the size of the token information.
 *ReturnLength = IntPtr((int)RL);

 // Free the token handle.
 CloseHandle(TokenHandle);

 return hr;
}

// Obtain the date for a particular token information
// class. The calling application must provide a properly
// sized buffer.
int GetTokenData(TOKEN_INFORMATION_CLASS TIC,
 IntPtr *TokenData,
 IntPtr TokenDataLength,
 IntPtr *ReturnLength)
{
 HANDLE TokenHandle = NULL; // Handle to the process token.
 DWORD RL = 0; // Return Length.
 HRESULT hr = 0; // Operation Result Value.

A C LIB Wrappers Access Example

44

 VOID* lpTokenData; // Token Data Holder.

 // Obtain a handle for the current process token.
 hr = OpenProcessToken(GetCurrentProcess(),
 TOKEN_QUERY,
 &TokenHandle);

 // Allocate memory for the return data.
 lpTokenData = malloc(TokenDataLength.ToInt32());

 // Obtain the size of the token for the desired
 // token information class.
 hr = GetTokenInformation(TokenHandle,
 TIC,
 lpTokenData,
 (DWORD)TokenDataLength.ToInt32(),
 &RL);

 // Return the size of the token information.
 *ReturnLength = IntPtr((int)RL);

 // Return the token data.
 *TokenData = IntPtr(lpTokenData);

 // Free the data holder.
 //free(lpTokenData);

 // Free the token handle.
 CloseHandle(TokenHandle);

 return hr;
}

// Convert the TOKEN_USER structure to a SID string.
int ConvertTokenUserToSidString(IntPtr TokenData,
 String **SIDString)
{
 HRESULT hr = 0; // Operation Result Value.
 TOKEN_USER *TU; // Token user data structure.
 LPTSTR SIDValue; // The string version of the SID.
 VOID *Temp; // A temporary pointer.

 // Convert the IntPtr to a TOKEN_USER structure.
 Temp = TokenData.ToPointer();
 TU = (TOKEN_USER*)Temp;

 // Convert the SID to a string.
 hr = ConvertSidToStringSid(TU−>User.Sid, &SIDValue);

 // Return the string value of the SID.
 *SIDString = new String(SIDValue);

 // Free the memory used by SIDValue.
 LocalFree(SIDValue);

 return hr;
}

// Convert a TOKEN_USER structure to user account information.
int ConvertTokenUserToUserData(IntPtr TokenData,
 String **UserName,

A C LIB Wrappers Access Example

45

 String **Domain)
{
 HRESULT hr = 0; // Operation Result Value.
 TOKEN_USER *TU; // Token user data structure.
 VOID *Temp; // A temporary pointer.
 LPTSTR lpUserName; // The user name value.
 LPTSTR lpDomain; // The user’s domain.
 SID_NAME_USE SNU; // Use of the SID Name.

 // Length of the data return values.
 DWORD UserNameLength = 40;
 DWORD DomainLength = 40;

 // Convert the IntPtr to a TOKEN_USER structure.
 Temp = TokenData.ToPointer();
 TU = (TOKEN_USER*)Temp;

 // Allocate memory for the return values.
 lpUserName = (LPTSTR)malloc(40);
 lpDomain = (LPTSTR)malloc(40);

 // Find the user account information.
 hr = LookupAccountSid(NULL,
 TU−>User.Sid,
 lpUserName,
 &UserNameLength,
 lpDomain,
 &DomainLength,
 &SNU);

 // Return the user account information.
 *UserName = new String(lpUserName);
 *Domain = new String(lpDomain);

 // Free the local variables.
 free(lpUserName);
 free(lpDomain);

 return hr;
}

// Free unmanaged memory used by the application.
void FreePointer(IntPtr Pointer)
{
 free(Pointer.ToPointer());
}

One of the features of this example is that it uses as many generic function calls as possible to reduce the
amount of Visual C++ code required to handle any given task. The GetTokenSize() and GetTokenData() both
fall into this category. You can use them to obtain any of a number of token types. The example concentrates
on the user token—the one that contains security information for the current user, but you can use these two
functions to gain access to any other supported token as well.

The GetTokenSize() function begins by using the OpenProcessToken() function to retrieve the token for the
current process. Every process the user opens contains a copy of the user’s token. However, the system and
other external processes can also open processes, so the only certain way to retrieve a copy of the user’s token
is to look at the current process. Notice that we’ve opened the token for query purposes only and that we

A C LIB Wrappers Access Example

46

obtain a handle to the current process using the GetCurrentProcess() function.

Once the code obtains a token handle, it can retrieve information about the token. The purpose of the
GetTokenSize() function is to tell the caller how much memory to allocate for the token information, not to
actually retrieve the information. The caller must provide one of several TOKEN_INFORMATION_CLASS
enumeration values as input to the GetTokenSize() function. We’ll visit these values later. For now, the
enumeration is used as input to the GetTokenInformation() function, which also requires the token handle and
a variable to return the length. If this were an information retrieval call, the code would also need to supply a
pointer to a buffer to receive the information and the length of that buffer.

Warning Always close all handles and free all allocated memory when working with unmanaged code. Every
call you make to the Win32 API, including the security API, is a call to unmanaged code. Notice the
call to CloseHandle() in the example code. This call frees the token handle before the
GetTokenSize() function returns.

The GetTokenData() function works much like the GetTokenSize(). In this case, the caller must provide a
pointer to a buffer used to store the data. However, you need to consider how the GetTokenInformation()
function works before you proceed. The GetTokenInformation() is general purpose—it returns more than one
type of data depending on the kind of token you request. As a result, it returns a VOID* that the application
must typecast to another kind of information. We’ll see how this works later. The point, for now, is that
GetTokenData() must allocate the memory for the GetTokenInformation() call and that you can’t free this
memory within the function as you would normally (notice the commented free(lpTokenData) call within the
code that shows where you’d normally free the buffer).

The data buffer returned by GetTokenInformation() contains a TOKEN_USER data structure. This data
structure contains a security identifier (SID) that we’ll use to obtain three pieces of information about the user.
The ConvertTokenUserToSidString() function accepts the buffer as input, typecasts it to a TOKEN_USER
data structure, then uses the data structure to make a ConvertSidToStringSid() call. The resulting LPTSTR,
SIDValue, is used to create a String value (SIDString). Notice that the code requires a double pointer (**) to
SIDString to create a reference to it. This is an idiosyncrasy of Visual C++ that you need to consider when
creating wrapper functions such as this one. Also notice that the function uses LocalFree() to free the memory
used by SIDValue. That’s because the memory for SIDValue is actually allocated by the
ConvertSidToStringSid() function. We’ll see later that locally allocated memory is freed using the free()
function.

The final wrapper function, ConvertTokenUserToUserData(), retrieves the user name and domain using the
SID. In this case, the code relies on the LookupAccountSid() function, which requires two locally allocated
buffers. Notice the use of the malloc() function with appropriate typecasting and the use of the free() function
calls to free the memory later.

The example does show one instance where there’s a direct correlation between a Win32 API function and the
wrapper function. The FreePointer() function simply calls the free() function used earlier to free memory
signified by a pointer.

The C# and Visual Basic code required to use all of these wrapper functions is almost mundane compared to
the wrapper code. The code calls the various wrappers to obtain a user token, use it to access the user’s SID,
name, and domain, and then display that information in a message box. Listing 3.3 shows the code to perform
these tasks.

Listing 3.3: Obtaining the User SID, Domain, and Name

A C LIB Wrappers Access Example

47

public enum TOKEN_INFORMATION_CLASS
{
 TokenUser = 1,
 TokenGroups,
 TokenPrivileges,
 TokenOwner,
 TokenPrimaryGroup,
 TokenDefaultDacl,
 TokenSource,
 TokenType,
 TokenImpersonationLevel,
 TokenStatistics,
 TokenRestrictedSids,
 TokenSessionId,
 TokenGroupsAndPrivileges,
 TokenSessionReference,
 TokenSandBoxInert
}

 private void btnTest_Click(object sender, System.EventArgs e)
{
 int Result;
 SecurityWrapper SW = new SecurityWrapper();
 IntPtr TokenSize = new IntPtr(0);
 IntPtr TokenData = new IntPtr(0);
 String SIDString = null;
 String UserName = null;
 String Domain = null;

 // Get the size of the data structure. The return value of
 // this call is always 0. The call has actually failed because
 // it didn’t retrieve the user information token.
 Result = SW.GetTokenSize((int)TOKEN_INFORMATION_CLASS.TokenUser,
 ref TokenSize);

 // Get the token data. The return value of this call should always
 // be 1. The call has succeeded in returning the user token.
 Result = SW.GetTokenData((int)TOKEN_INFORMATION_CLASS.TokenUser,
 ref TokenData,
 TokenSize,
 ref TokenSize);

 // Obtain the SID String.
 Result = SW.ConvertTokenUserToSidString(TokenData, ref SIDString);

 // Obtain the user account information.
 Result = SW.ConvertTokenUserToUserData(TokenData,
 ref UserName,
 ref Domain);

 // Free the memory used by the token data.
 SW.FreePointer(TokenData);

 // Display the output.
 MessageBox.Show("User Name:\t" + UserName +
 "\r\nDomain:\t\t" + Domain +
 "\r\nSID:\t\t" + SIDString,
 "Local Account Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
}

A C LIB Wrappers Access Example

48

The TOKEN_INFORMATION_CLASS enumeration shows the types of data you can request using the
GetTokenSize() and GetTokenData() methods. The example code uses TokenUser. However, you can also
gain access to the process privileges, owner, group association, statistics, and other kind of information. In
short, the technique shown in this section is the tip of a much larger iceberg.

The btnTest_Click() method is straightforward. The GetTokenSize() and GetTokenData() methods work
together to obtain the TokenData pointer—which is a pointer to the TOKEN_USER data structure discussed
earlier. However, as far as C# is concerned, TokenData is simply a pointer to some data. It could point to any
of the data structures used by any of the TOKEN_INFORMATION_CLASS enumeration members. It’s only
during the call to the ConvertTokenUserToSidString() and ConvertTokenUserToUserData() functions that the
code becomes specific to the TOKEN_USER data structure. Figure 3.1 shows the output of this example.

Warning The code must free the memory the TokenData variable points to before it exits. Otherwise, the
application will leak memory. The Visual C++ DLL contains a special function, FreePointer(), for
this purpose. Any DLL you create should contain a special function that accomplishes this same
task.

Figure 3.1: The output of the example program is simple, but demonstrates token access.

A C LIB Substitute Functions Example

There are times when you can get around using the Win32 API by using a substitute of some type. For
example, many developers will want to add Windows XP programming effects to their application so that
application uses the themes that Windows XP supports. Normally, this would mean writing code that changes
the owner draw functions for the associated application. However, if you’re willing to get most but not all of
the Windows XP look, you can get around using the Win32 API.

Note The technique shown in this section relies on a relatively new Windows feature called
side−by−side DLLs. This new technology enables two versions of the same DLL to exist
on the same machine. That’s how Windows XP keeps an older version of the common
controls DLL and the new 6.0 version on the same machine. You’ll find the side−by−side
files in the \WINDOWS\WinSxS folder of the affected system. In fact, you can use this
information to determine if the client machine supports side−by−side functionality.
Windows uses the default DLL for applications that don’t request special functionality.
In the case of this example, the manifest requests the special functionality found in the
6.0 version of the common controls.

This technique involves making a minor change to the design of your application and creating a special
manifest. The minor change won’t affect application operation under other versions of Windows, yet will
allow you to see the themes supported by Windows XP. The source code for this example appears in the
\Chapter 03\C#\ShowMessage and the \Chapter 03\VB\Show−Message folders of the CD. This is the same
example from Chapter 2 with one difference—the FlatStyle property for all of the controls is set to System,
rather than Flat as usual.

A C LIB Substitute Functions Example

49

Simply changing the FlatStyle property won’t change the appearance of the application. You also need to
create a manifest file that tells Windows XP to use the 6.0 version of the common controls DLL. The
following code shows the XML file you’ll need to create. Note that the important part of this file is the
content of the <dependentAssembly> tag.

<?xml version="1.0" encoding="UTF−8" standalone="yes"?>
<assembly xmlns="urn:schemas−microsoft−com:asm.v1" manifestVersion="1.0">
 <assemblyIdentity type="win32"
 name="ShowMessage"
 version="1.0.0.0"
 processorArchitecture="x86"
 />
 <dependency>
 <dependentAssembly>
 <assemblyIdentity type="win32"
 name="Microsoft.Windows.Common−Controls"
 version="6.0.0.0"
 processorArchitecture="X86"
 publicKeyToken="6595b64144ccf1df"
 language="*"
 />
 </dependentAssembly>
 </dependency>
</assembly>

The 6.0 version of the common controls DLL includes support for the themes used by Windows XP. If you
don’t include the manifest, then the application will continue using the older version of the common controls
DLL. The interesting part about this solution is that the application will now use the Windows XP themes
when running under Windows XP, but act normally under other versions of Windows. Figure 3.2 shows the
output of the application (on the right) and contrasts it to the normal appearance of the dialog box without
changes (on the left).

Figure 3.2: A simple change makes Windows XP theme support available to your application.

As you can see from the figure, the application on the right now uses the rounded buttons found in Windows
XP applications. You’ll find that all of the other common controls work the same way. In fact, this technique
also works for all other common elements including dialog boxes. The one compromise you’ll need to make
is that Windows XP won’t change the appearance of owner−drawn controls. For example, the icon displayed
in the modified application still reflects its non−Windows XP origin. This is actually a small price to pay for
everything you do get without a single line of additional code. The “Working with Theme Support Example”
section of Chapter 9 shows how to fix this problem.

A C LIB Substitute Functions Example

50

Interpreting Error and Result Values

Sometimes your best efforts can’t keep the user from making a mistake or prevent the system from befouling
perfectly good code. In those situations, you need to trap and report the error so the user has some idea of
what’s going on with the application. That’s why you need to include some type of error reporting in your
application. The actual error reporting process is relatively easy—not as easy as within .NET, but certainly
easier than some developers think. Listing 3.4 shows the code you’ll need to make this example work.

Listing 3.4: Reporting Win32 API Errors Is Relatively Easy Using This Code.

// Declare the LoadLibraryEx() function.
[DllImport("Kernel32.DLL")]
public static extern IntPtr LoadLibraryEx(String lpFileName,
 IntPtr hFile,
 Int32 dwFlags);

// Tell Windows to load the DLL as a data file.
public const Int32 LOAD_LIBRARY_AS_DATAFILE = 0x00000002;

// Declare the GetLastError() function.
[DllImport("Kernel32.DLL")]
public static extern Int32 GetLastError();

// Declare the FormatMessage() function.
[DllImport("Kernel32.DLL")]
public static extern Int32 FormatMessage(Int32 dwFlags,
 IntPtr lpSource,
 Int32 dwMessageID,
 Int32 dwLanguageID,
 out String lpBuffer,
 Int32 nSize,
 Int32 Arguments);

// Constants used to format the message.
public const Int32 FORMAT_MESSAGE_ALLOCATE_BUFFER = 0x00000100;
public const Int32 FORMAT_MESSAGE_IGNORE_INSERTS = 0x00000200;
public const Int32 FORMAT_MESSAGE_FROM_STRING = 0x00000400;
public const Int32 FORMAT_MESSAGE_FROM_HMODULE = 0x00000800;
public const Int32 FORMAT_MESSAGE_FROM_SYSTEM = 0x00001000;
public const Int32 FORMAT_MESSAGE_ARGUMENT_ARRAY = 0x00002000;
public const Int32 FORMAT_MESSAGE_MAX_WIDTH_MASK = 0x000000FF;

private void btnTest_Click(object sender, System.EventArgs e)
{
 IntPtr hLib; // Handle of the library we want to load.
 Int32 ErrNum; // Error number.
 String ErrStr; // Error message.

 // Attempt to load a non−existent library.
 hLib = LoadLibraryEx("Nothing.DLL",
 IntPtr.Zero,
 LOAD_LIBRARY_AS_DATAFILE);

 // Determine there is an error.
 if (hLib == IntPtr.Zero)
 {

Interpreting Error and Result Values

51

 // Retrieve the error.
 ErrNum = GetLastError();

 // Change it into a string.
 FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 IntPtr.Zero,
 ErrNum,
 0,
 out ErrStr,
 0,
 0);

 // Display the message on screen.
 MessageBox.Show("Error Number: " + ErrNum.ToString() +
 "\r\n" + ErrStr,
 "Library Load Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }
}

I’ve included the LoadLibrary() function in this example because it comes in handy for a number of purposes.
For example, you’ll use the LoadLibrary() function to read icons embedded in existing DLLs such as
Shell32.DLL. However, in this case, we need to create an error condition, so I’ve asked LoadLibrary() to read
a non−existent DLL file. This code will produce a simple error message.

You have to read the Win32 API documentation carefully when checking for error conditions. In this case, a
return value of 0 represents an error. Any other return value is a handle to the library. All that the code needs
to do is verify that hLib contains a 0 in this example. It will, so the code that follows will execute.

Getting an error message is a two−step process. First, you have to retrieve the error number using
GetLastError(). Of course, a number isn’t particularly helpful to the end user, so you need to change the error
number into a string using the FormatMessage() function. The FormatMessage() function is used for a variety
of tasks, so it looks overly complex. However, when you create error message strings, the code shown in
Listing 3.4 is generally all you need to provide. You have to tell FormatMessage() how to format the message
using a number of flags. The arguments have to include the error number, and you need to provide a buffer to
store the error string. Figure 3.3 shows the output from this example.

Figure 3.3: An example of a system error message retrieved using FormatMessage()

Helpful Win32 Programming Tools

Helpful Win32 Programming Tools

52

Visual Studio .NET comes with a variety of tools as part of the package. In many cases, developers will
already know about these tools because they’ll use them to debug and validate existing applications. However,
many of the tools take on special meaning when you develop applications that rely upon the Win32 API.
These tools can help you discover some of the behaviors of the Win32 API and information that might not
appear in the Visual Studio documentation.

We’ll work with several of these tools as the book progresses. However, three tools are exceptionally
important when you begin working with the Win32 API from the managed environment.

Dependency Walker This utility helps you learn about the contents of unmanaged DLLs on your
system—both imports and exports. In addition, it helps you understand the relationship between various
DLLs.

Error Lookup This utility enables you to decipher the error numbers returned by many of the Win32 API
functions. The error numbers usually don’t provide much information, but Error Lookup helps them make
sense.

Spy++ This utility makes it possible to spy on your application—to see what the application is doing while
running. While Spy++ doesn’t provide the detailed information that a debugger would provide, it does help
you see the application from the Windows perspective. This view often helps reduce the complexity of
learning about the Win32 API.

Now that you know a little more about the utilities, let’s look at them in depth. The following sections discuss
each of the three utilities. We’ll pay special attention to how the utilities can make it easier to work with the
Win32 API. Of course, you’ll also learn some general usage tips as the section progresses.

Dependency Walker

The Dependency Walker (also called Depends for the name of the executable file) enables you to view the
dependencies between various DLLs. For example, you might know that User32.DLL contains the
MessageBoxEx() function, but may not realize that User32.DLL also relies on other DLLs to make the
function work. The interdependencies between DLLs are the cause of a number of problems with older,
unmanaged applications, which is why Microsoft is now promoting the .NET Framework. However,
whenever you work with the Win32 API, you also need to know about these dependencies to avoid problems
with your application.

Now that you know how the Dependency Viewer is used normally, it’s helpful to know how you’ll use it for
Win32 API application development. The Dependency Walker also displays a list of inputs and outputs for a
DLL. For example, it shows that the User32.DLL file exports the MessageBoxEx() function. However, the
Dependency Walker shows more—it shows that that there are actually two versions of this function, one for
Unicode character use and a second for plain American National Standards Institute (ANSI) use. When you
work with the C header files, they automatically convert MessageBoxExA() (ANSI) or MessageBoxExW()
(Unicode) to MessageBoxEx() for the desired platform. In some cases, you’ll have to perform this task
manually by specifying an entry point as shown here. (Visual Basic developers will need to perform this task
more often than C# developers.)

[DllImport("user32.dll",
 CharSet=CharSet.Auto,
 EntryPoint="MessageBoxExA")]
public static extern int MessageBoxEx(
 IntPtr hWnd,
 [MarshalAs(UnmanagedType.LPTStr)]String Message,

Dependency Walker

53

 [MarshalAs(UnmanagedType.LPTStr)]String Header,
 UInt32 Type,
 UInt16 LanguageID);

Notice that the EntryPoint argument specifies which version of the MessageBoxEx() function to use—the
ANSI version in this case. Note that you can also use a numeric entry point if desired, but the text version is
usually more readable and less susceptible to changes in the DLL’s organization. Unfortunately, Windows
2000 and Windows XP both rely on the Unicode version of the MessageBoxEx() function, so you get some
odd results as shown in Figure 3.4 when using this form of the DllImport attribute.

Figure 3.4: Choosing the wrong entry point for a DLL can have unanticipated results.

Changing the DllImport attribute to [DllImport("user32.dll", CharSet=CharSet.Auto,
EntryPoint="MessageBoxExW")] returns the output to normal. This modification demonstrates that both
Visual Basic and C# will choose an appropriate version of a function if the selection is clear. The only time
you’ll need to specify an EntryPoint value is when the entry point is unclear or if you’re compiling an
application for a platform other than the current platform. For example, you’ll need to use the
MessageBoxExA() entry point when compiling an application for the Windows 9x platform. You’ll also need
to provide a specific entry point if you set the ExactSpelling argument to true (the default is false). Setting
ExactSpelling to true ensures that you access only the function you need for a particular application, rather
than allow .NET to locate something "close" for you.

Tip To obtain help on any of the common Windows API functions listed in the Dependency
Walker, highlight the function in question and press Enter. Dependency Walker will open the
help file currently associated with Visual Studio. Unfortunately, not all of the functions are
documented in the help provided with Visual Studio .NET. To obtain full documentation,
you’ll need a copy of the Platform SDK or MSDN.

Viewing the Dependencies

Dependency Walker (or Depends, as it’s listed on the Microsoft Visual Studio 6.0 Tools menu) helps you
prevent the problem of the missing file. It lists every file that an application, DLL, or other executable file
depends on to execute. You can use the output of this application to create a list of required files for your
application or to discover the inner workings of DLLs. Both of these functions are actually important when
you use the Win32 API in your application, because you now need to consider the problems of providing the
user with the correct version of any DLL that you use.

Loading a file for examination is as easy as using the File Ø Open command to open the executable file that
you want to examine. Figure 3.5 shows an example of the output generated for the User32.DLL file. As you
can see, User32.DLL contains a wealth of functions. Notice that the figure shows the MessageBoxExA()
function highlighted—the Unicode version, MessageBoxExW() function appears directly below this function.
The figure also shows that each function entry includes both a function name and an ordinal number—either
will work as an entry point.

Dependency Walker

54

Note DLLs created with Visual C++ often have what’s termed decoration in the function names. The
decoration makes the function names almost unreadable to the average human. To undecorate the
function names, right−click within the appropriate function−listing pane, and then choose Undecorate
C++ Functions from the context menu.

Figure 3.5: Dependency Walker can help you determine what external files your component needs to operate.

As you can see, this DLL provides you with a lot of information about the dependencies of your file. In the
upper−left corner is a hierarchical view of dependencies, starting with the executable file that you want to
check. The hierarchy shows the files that each preceding file requires to run. So, while the User32.DLL file
itself relies on NTDLL.DLL, KERNEL32.DLL, and GDI32.DLL (along with other files), each of the support
DLLs rely on other DLLs, such as the RPCRT4.DLL used by the ADVAPI32.DLL.

To the right of the hierarchical view are two lists. The upper list tells you the functions the parent executable
imports from the current file. The lower list tells you the functions the highlighted executable exports for other
executables to use. You’ll typically see a blank export list for applications. Most DLLs export functions, but
some don’t import anything. The presentation will vary depending on the type of file you view.

At the bottom, you’ll see an alphabetical list of all of the files along with pertinent information, such as the
executable file’s version number and whether the DLL or other files relies on a debug version of that file. This
list comes in handy when debugging an application. It helps you to check for problems that might occur when
using an older version of the DLL or to detect potential corruption in a support file. You’ll also find it handy
when you want to check that final release build before you release it for public use. Many applications have
tested poorly because they still had “hidden” debug code in them.

Tip It’s interesting to note that Dependency Walker doesn’t include any kind of print functionality.
Fortunately, you can highlight a list of items you want to print, and click Copy (or press Ctrl−C) to copy
them to the clipboard. Use the Paste function in your favorite word processor to create a document you
can print for future reference.

Newer versions of the Dependency Walker (including the version that ships with Visual Studio .NET) have a
final window shown at the bottom of Figure 3.5. This window contains any messages that affect the display of
the opened file. For example, User32.DLL or one of the imported DLLs in the hierarchy relies on a
delay−loaded module (some executable file). The Dependency Walker might not be able to display this
module if the associated executable doesn’t document it properly.

Dependency Walker

55

Special Viewing Considerations for Managed Applications

As far as a managed application is concerned, the world revolves around MSCOREE.DLL—there are no other
DLLs. Even if you import a DLL using the [DllImport] attribute, the application only sees
MSCOREE.DLL—at least at the outset (see the details on using profiling in the "Using Special Dependency
Viewer Features" section). To demonstrate this principle, open the ShowMessage.EXE application from
Chapter 2. Figure 3.6 shows the C# version of this application, but the Visual Basic version behaves in a
similar manner.

Figure 3.6: Managed applications only see the MSCOREE.DLL file and rely on it for everything.

The really odd part of the display is that you won’t see any imported or exported functions for the application.
The managed environment doesn’t expose its requirements for outside sources the same way as the
unmanaged environment does. If you want to see which DLLs a managed application requires to work, you’ll
need to use ILDASM to view the application manifest. Figure 3.7 shows the example from the ShowMessage
application. Notice that the imported function appears as any other function, which means that you might
spend a considerable amount of time looking for imported functions in a complex application.

Figure 3.7: To see the imported functions for a managed application, you must view the application in
ILDASM.

Double−clicking a function is the only way to make sure it’s actually imported from an external DLL. Figure
3.8 shows the code for the MessageBoxEx() function. Notice that this function relies on PInvoke—a sure sign
that the function appears in another DLL. In fact, the code tells you which DLL is used and all of the
implementation details for the function. However, having to dig for this information does make things
inconvenient for the developer.

Dependency Walker

56

Figure 3.8: ILDASM will tell you which DLL the application uses, as well as any implementation details.

The Visual Basic version of the code looks similar to the code in Figure 3.8. The differences are minor but
notable. For example, because we can’t use a UInt in Visual Basic, you’ll see the Type and Language
arguments listed as Int32 and marshaled as UInt32. The Visual Basic implementation also relies upon the
EntryPoint argument for [DllImport], so the PInvoke information looks different from the C# implementation,
but both act the same. In short, even though there are small differences between languages, the functionality
of the PInvoke call is the same.

Using Special Dependency Viewer Features

Newer versions of the Dependency Walker include some special features that you might find helpful when
creating an application that relies on one or more unmanaged DLLs. One of the more interesting features is
the ability to profile your application. In this case, profiling doesn’t have anything to do with performance;
we’re talking about tracing every call that your application makes.

The profiling feature is exceptionally helpful to developers who use Win32 API calls because it exposes the
use of imported DLLs in most cases. In addition, you can track how the managed application uses the Win32
API call and compare it to an unmanaged application’s use of the same call. This comparison provides you
with clues when a managed application refuses to use a Win32 API call correctly and often leads to a solution
to the problem. To start the profiling process, choose the Profile Ø Start Profiling command. You’ll see a
Profile Module dialog box like the one shown in Figure 3.9.

Figure 3.9: The Profile Module dialog box configures the profiling feature of the Dependency Walker.

There are actually two sections to this dialog box. The first section provides a command−line argument for the
application and changes the application’s starting path. In most cases, you won’t need to change either entry.
You can also choose whether Depends clears the Log window before it begins the profiling process. The
Simulate ShellExecute option determines how the application is started. Normally, you’ll keep this checked to
ensure that the application path information is provided to the application when it starts. The only exception is
when you’re troubleshooting problems related to the application path. If you uncheck this option, then
Dependency Walker will start the application using the CreateProcess() API call rather than using
ShellExecute().

The second section contains a list of items that you will want to monitor. For example, you might only be
interested in profiling the libraries that your application loads and when it loads them. In this case, you’d
select the Log LoadLibrary function calls option. The number of entries in the Log window can build very
quickly, so it helps to decide what you really need to monitor at the outset, rather than wading through a lot of

Dependency Walker

57

useless information that you don’t really want. Figure 3.9 shows the default information that Depends will
collect about your application. This setup is useful in determining how an application uses the various
libraries that it requires to operate. It’s interesting to note that you can even use Depends to monitor debug
output messages that you’ve placed within an application, making it a handy tool for monitoring application
activity outside of a programming language’s IDE.

Once you’ve decided how to start the application and what you want to monitor, click OK. Depends will load
the application and start displaying profile information. In many cases, you’ll need to clear the log entries
shown in the bottom pane of the window before you proceed to test Win32 API calls; otherwise, there’s
simply too much material to check. Figure 3.10 shows the Log window entries for the ShowMessage.EXE
application we looked at earlier. Notice the trapped call to the MessageBoxExW() function. Also notice that
User32.DLL is now listed as one of the DLLs used by the application.

Figure 3.10: Depends will help you monitor the startup activity for any application you create.

Even though you can’t see it in the book, the Log window shows a problem with a call made by the
application after I clicked Test. This call is highlighted in red in the Log window. In addition, the affected
modules are highlighted in red in both the module list and the hierarchical display. What this means to you, as
a developer, is that Depends has gone from being a simple analysis aid to an application that can help you
diagnose application problems.

In this case, the errant call is caused by the method that .NET uses to locate a function accessed by the
[DllImport] attribute. Looking at the C# version of the ShowMessage application, you’ll notice that
MSCORWKS.DLL first makes a call to User32.DLL for the MessageBoxEx() function. When that fails, it
makes a call to the MessageBoxExW() function and succeeds. Now if you look at the Visual Basic version of
the ShowMessage application, you’ll notice that MSCORWKS.DLL begins by making a request for the
MessageBoxExW() function, which succeeds. It then makes a request for the MessageBoxExWW() function,
which fails. Observing these behaviors can tell you a lot about how .NET works with Win32 API calls.

Depends returns control of the application to you as soon as the application finishes loading. You can work
with the application just as you normally would and monitor the results in the Log window. When you finish
working with an application, you can stop the logging process using the Depends Profile Ø Stop Profiling
command.

There are quite a few other new features provided with Depends, but the ability to profile your application is
probably the highlight of the list. One of the new capabilities allows you to save a Dependency Walker Image

Dependency Walker

58

(DWI) file. This option creates a file on disk that allows you to restore your setup as needed. Depends
provides so many new features when it comes to configuring the application environment—the previous
versions didn’t require this useful feature.

The View menu contains three options that you really need to know about. The first is a System Information
command that displays a dialog similar to the one shown in Figure 3.11. This short summary provides a quick
view of your current system configuration, which could be important if you want to stress the application
under a set of specific conditions like low memory. There are also options to display the full paths for all files
and to undecorate those really weird function names that you’ll normally find within C++ generated DLLs.

Figure 3.11: The System Information dialog box gives you a quick overview of your system.

One final feature that improves the usability of Depends is the ability to search for specific information. For
example, you can highlight a module of interest and use View menu options to search for other occurrences of
the same module within the hierarchical view. This allows you to better see where specific modules are used
and by whom. Another search feature, this one found on the Edit menu, allows you to search the Log window
for words, just as you would with a text editor. You could use this feature to help find errors (the logs do get
very long very fast) or to find instances where a specific module is used for tasks like application
initialization.

Error Lookup

The Error Lookup program is one of those simple utilities that are simple in design and an obvious addition to
the developer’s toolbox once you think about it. This tool is important to the managed application developer
because you don’t have as many resources for locating error information—at least not without specifically
adding them to your application. Generally, you’ll receive error information as a number from the Win32 API.
You must either locate the error number in the help file (an impossible task) or add code to locate the text
version of the error message to your code. Fortunately, Error Lookup presents a third solution.

All you need to do to use Error Lookup is start the utility from within the IDE. Type the number into the
Value field and click Look Up to see the associated text. Figure 3.12 shows an example of an error message
output.

Error Lookup

59

Figure 3.12: Use Error Lookup to find the text associated with an error number.

Error Lookup will locate all general Win32 API error messages as configured when you start it. However, you
won’t always work with generic modules. Sometimes, as in the MMC example later in the book, you’ll need
to work with specialized DLLs. In this case, you’ll want to add that module to the list of modules that Error
Lookup uses as a resource. All you need to do is click Modules, add the name of the DLL with the DLL
extension to the Module Name field (include path information when necessary), click Add, and then click OK.
Error Lookup will also look in the added modules when it can’t find an error number in the general message
list.

Spy++

Spy++ is a complex utility that can give you more information about your application than you might have
thought possible. This section is going to give you a very brief overview of this utility. What I’ll do is point
out some of the more interesting features that will make working with the applications in this book easier.
Make sure you take time to work with this utility further once you’ve learned the basics. We’ll also spend
more time with it as the book progresses.

The first thing you’ll see when you start Spy++ is a list of windows. A window can be any number of object
types, but the most familiar is the application window. Figure 3.13 shows an example of what you might see
when you start Spy++ with the ShowMessage sample application running.

Figure 3.13: Spy++ allows you to take your application apart and see it from the Windows perspective.

Notice that Spy++ shows two windows that belong to the main application window—all of which are
components on the dialog box. In this case, the Test and Quit buttons are both considered windows. The
buttons are all objects derived from the WindowsForms10 class, which means that Spy++ is right on track
displaying the information as it has. Note that the class will vary by language, version of the .NET
Framework, and even by the type of application. For example, unmanaged Visual C++ applications derive
their windows from the CWindow class.

Tip Spy++ often displays more windows than you think are open on the client machine. Some of
these windows are hidden from view; others appear in areas such as the Taskbar Tray
(Notification Area for Windows XP developers). You can always ask Spy++ to show you where
a window resides by right−clicking the window entry and choosing Highlight from the context
menu. This menu also contains a Refresh option to update the Spy++ display (it’s static) and a

Spy++

60

Messages option that opens a new window to track messages for the selected window.

Working with Window Properties

Windows are a central part of working with Spy++. They represent the method you’ll normally use to begin
deciphering how an application works and how well it runs. It makes sense, then, that you can access every
aspect of an application, its child windows, processes, and threads through the Window Properties dialog box
shown in Figure 3.14.

Figure 3.14: The Window Properties dialog box enables you to learn more about the structure of your
application.

Accessing this dialog box is easy: All you need to do is right−click the window you want to view, then choose
Properties from the context menu. You can also access this dialog box using the View Ø Properties command.

The General tab of the Window Properties dialog box tells you about the window as a whole. It includes the
window’s display name, the window handle, the virtual address of the window procedure, the size of the
rectangle used to display the window (both present and restored sizes), and various other pieces of general
application information.

The Styles tab contains a list of the window style constants used to create the window. For example, you’ll
commonly find WS_VISIBLE as one of the items in the list unless you’re dealing with an invisible window.
This same tab contains extended styles for the window like WS_EX_APPWINDOW. These constants should
be familiar to someone with C/C++ programming experience since you need them to display windows in most
cases.

The Windows tab contains five entries. You can move between windows at the same level by clicking the
links in the Next Window and Previous Window fields. The Parent Window field will contain a link if this is a
child window or (None) if this is a main window. If the window contains child windows (like the components
for the ShowMessage program), you’ll see an entry in the First Child field. Clicking this link will take you
down one level in the hierarchy so that you can examine any child windows that belong to the current
window. Finally, the Owner Window field will contain a link if another window owns the current
window—except for the Desktop, in which case the field displays a value of (None).

The Class tab tells you about the class used to create the window. For example, the main window for the
ShowMessage program uses the WindowsForms10.Window.8.app1 class, while the components are all listed
as being part of component−specific classes like the BUTTON class (actually the
WindowsForms10.BUTTON.app1 class) used for the Quit button. You’ll also find class−specific information
such as class style codes, number of data bytes used by this class instance, a window instance handle, number
of bytes used by the window, and window details like the name of any associated menus.

Spy++

61

The Process tab provides a list of process IDs and thread IDs associated with the current window. Clicking the
links associated with each field will display the properties dialog associated with the process or thread ID.
We’ll look at this properties dialog in more detail in the Viewing Processes section that follows.

Viewing Messages

Windows runs on messages. Every activity that the user engages in generates a message of some sort. It’s
important to monitor those messages and see how your application reacts. For example, if you expect a certain
message to get generated when the user clicks a button, you can monitor the message stream to see if it really
does get sent.

There are a number of ways to display the Messages window for a window that you’re debugging. You could
right−click on the window and choose Messages from the context menu. However, in this particular case, the
best way to start the message monitoring process is to use the Spy Ø Log Messages command. (You won’t see
the Message Options dialog box when you use the context menu method of displaying the Messages window.)
Using this command will display the Message Options dialog box shown in Figure 3.15.

Figure 3.15: The Message Options dialog box enables you to configure Spy++ for message snooping.

Notice that Selected Object frame on the right side of the dialog box. This frame provides you with
information about the object that you’ve selected. This additional information enables you to determine if this
is the window that you want to monitor. The Finder Tool on the left side of the dialog box is interesting as
well. Drag this tool to any displayed window, then release the mouse button, and the information on the right
side will change to match the data for that window. (Spy++ highlights the windows as you drag the mouse
cursor over them so that you can see which one is being selected.) The Windows tab also helps you to choose
additional windows. For example, you may want to monitor the child windows as well as the parent window
for a specific kind of message.

There are 1,009 different messages that Spy++ can track for the average window. The Messages tab shown in
Figure 3.16 gives you some idea of just how extensive the message coverage is.

Spy++

62

Figure 3.16: The Messages tab helps you select the messages that you want to track for a window.

Needless to say, you could end up with a lot of useless tracking information if you don’t trim the number of
messages down to a more reasonable selection. That’s why the Messages tab is so important. This tab helps
you choose which messages Spy++ tracks in the Messages window. You can choose messages singularly or
by group. A Select All button chooses all of the messages, while a Clear All button clears the current
selections. Make sure you tune these settings before you display the Messages window or your chances of
getting the input you need are very small indeed.

It’s also important to determine how you want information displayed in the Messages window. In most cases,
the default options on the Output tab will work just fine. Spy++ assumes that you want to display only
decoded information and only on screen. However, there are options for displaying raw message information.
You can also choose to send the output to a file as well as to the screen.

Once you have the options set for your Messages window, you can click OK and Spy++ will display it for
you. Figure 3.17 shows an example of what a Messages window would look like if you choose to monitor a
subset of button and mouse events. As you can see, just selecting these two message groups generates a lot of
message traffic.

Figure 3.17: The Messages window will display the messages that you choose to monitor for an application.

In this case, I clicked the Test button several times and moved the mouse around on screen. Notice that the log
entries contain the handle of the window where the action occurred, the action performed (mouse button up or
down, mouse move, or set cursor), and the position where the action occurred. Obviously, this is a simple test
case, but it’s also easy to see that monitoring messages can provide you with very important debugging clues

Spy++

63

for your application.

Viewing Processes and Threads

Every application you create will have at least one process and one thread. Consider a process as the overall
application identifier, while a thread consists of a particular set of actions taking place within that process. In a
multi−threaded application, each thread of execution is performing a single task that affects the application
(the process) as a whole.

Spy++ provides methods for monitoring both processes and threads. All you need to do is use the Spy Ø
Processes or Spy Ø Threads command to display the appropriate window. Figure 3.18 shows an example of
the Processes window.

It’s interesting to note that the Processes window also contains a list of any threads owned by the process in a
hierarchical format. For this reason, you’ll normally want to use the Processes window over the Threads
window. You get more information in an easier−to−use format using the Processes window. We’ll discuss the
Processes and Threads windows in more detail as the book progresses.

Figure 3.18: Spy++ will allow you to monitor both threads and processes.

Where Do You Go from Here?

This chapter has provided you with the general information you need to access any Win32 API call. We
haven’t delved into the nuances of specific technologies, but you now know about the tools to locate and call
Win32 API functions in general. You also have some idea of when you need to use a C library instead of a
direct Win32 API call and when you need to use Visual C++ to provide glue code for some types of Win32
API calls.

One of the focal points of this chapter is the utilities that Microsoft provides with Visual Studio .NET. These
utilities still have their traditional uses, but they also have special uses for Win32 API developers. It pays to
know what resources you have at your disposal when you work with something as complex as Win32 API
access. Learning about these utilities now will save you considerable time and effort later.

Chapter 4 will help you understand another type of Win32 API call, the Windows message. Sometimes you
don’t need a Win32 API function to produce a certain effect under Windows—what you need is a message
sent to another application or to Windows itself to perform a given task. Consequently, it’s essential to know
how Windows messages work so that you can make these calls as needed. Interestingly enough, sometimes
you have to call your own application to produce an event needed to perform tasks such as shutting the
application down in an emergency.

Spy++

64

Chapter 4: Processing Windows Messages

Overview

As part of its effort to hide some of the mundane details of how Windows works from developers, Microsoft
has actually hidden a few too many facts. One of the issues you need to know about is how Windows uses and
processes messages. For that matter, you need to know how to create your own messages at times. While the
built−in message handling provided by Microsoft for the .NET Framework environment works most of the
time, there are a few situations where you might want to have more control than the environment provides.

This chapter discusses all of the aspects of Windows message processing, handling, and generation. You’ll
learn about the message pump and some of the other low−level details that the .NET Framework normally
hides. In addition, we’ll look at some of the messages that the .NET Framework handles for you. For example,
you have access to the WM_HELP message—it’s just hidden by a form event handler (more on this topic in
the “Windows Message Handlers Found in the .NET Framework” section of the chapter).

The important bit of information to get from this chapter is that Windows uses a messaging system to
communicate with applications that’s remained essentially unchanged from the days of Windows 3.x. The
applications can also communicate with Windows and other applications using messages. In short,
understanding the messaging system is essential if you want to build robust applications.

Understanding the Windows Message Types

Windows is literally packed with messages. There are thousands of messages to which your application can
respond. Even the user interface messages number over a thousand. There are messages for mouse movement,
keyboard clicks, system messages, user messages, all kinds of messages. One of the best places to view these
messages in action is Spy++. Figure 4.1 shows the Messages tab of the Message Options dialog box. As you
can see, there are a number of ways to group just the messages that appear in the user interface portion of
Windows. (You can learn more about Spy++ in the “Spy++” section of Chapter 4—messages appear in the
“Viewing Messages” subsection.)

User interface messages don’t exist in a vacuum—you aren’t going to find many messages that exist in
isolation. Consider the simple act of clicking a button. When a user clicks the button, it generates a
WM_LBUTTONDOWN message, and then a WM_LBUTTONUP message. If the user presses and releases
the mouse button within the time limits of a click, the act also generates a BN_CLICKED message, which
Windows sends to the button’s parent. This action generates a BM_CLICK message, which is where event
handlers normally act on the button click (both managed and unmanaged).

However, the presence of a WM_LBUTTONDOWN message doesn’t necessarily signify a button click—it
also occurs for radio button selections and other control events, so Windows has to know which control is the
focus of the action. In addition, the WM_LBUTTONDOWN message can begin a drag−and−drop action. The
user might not want to actually select the item; they may simply want to move it. (Of course, dragging and
dropping one or more objects normally entails some form of selection—it may simply mean the object isn’t
activated.)

65

Figure 4.1: Spy++ provides one of the best ways to graphically see the effects of messages.

Something I haven’t covered in all of this is the appearance of ancillary messages when a user performs most
tasks. For example, looking at the same button click from the previous paragraph, the user doesn’t just click a
button; the mouse cursor has to appear in the right place to perform the click. This means generating a wealth
of WM_MOUSEMOVE messages as the user moves the mouse to the correct position in the dialog box. If the
user moves the mouse outside the dialog area, then the dialog will also receive a WM_MOUSELEAVE
message. There’s no WM_MOUSEENTER message because the WM_MOUSEMOVE message serves to tell
the application of the mouse entry into the dialog area.

Fortunately, even in unmanaged applications, a developer only has to track the messages of interest and can
ignore everything else. The developer doesn’t have to track every message and suffer the repercussions of
message overload. The .NET Framework further reduces the need to track messages—as we’ll see in the
“Windows Message Handlers Found in the .NET Framework” section that follows.

In many cases, a user interface message doesn’t affect the user interface directly—it acts in the background as
a notification of change. For example, Windows issues the WM_SYSCOLORCHANGE message to all
top−level windows whenever the user changes the system colors. This notification helps the application
maintain the appearance of controls and data so that the reader can still see the screen, no matter how garish
the color selection.

There’s a group of messages that affect the application as a whole, including the user interface, but act in the
background instead of the foreground. For example, Windows issues a WM_POWER message every time the
machine is about to enter the suspended mode. An application can track the WM_POWER message to
determine when the system is about to suspend operations. It can use this message as a way to determine when
to save application status information or open data files.

System−level messages often provide two−way communication for applications. An application can receive a
system−level notification such as the WM_POWER message. It can also issue a system−level request using
the WM_SYSCOMMAND message. In this last case, the command often has nothing to do with the user
interface of an application at all, but does affect system or individual application operation. In many cases, the
request is for background services that the operating system can provide anonymously in an asynchronous
fashion.

If you haven’t noticed already, all of the messages we’ve discussed have a two−letter identifier followed by
the message function, task, or type. The two−letter identifier provides the best means of classifying most (but
not all) messages. Table 4.1 provides a list of the most common message types with accompanying short
description.

Chapter 4: Processing Windows Messages

66

Note Table 4.1 doesn’t contain a complete list of all prefixes. It includes a list of common prefixes that the
developer is likely to use or care about. For example, the list doesn’t contain the NM prefix because
these messages are normally used at a low level for parent control notification of events handled at a
higher level by application code.

Table 4.1: Common Prefixes for Win32 API Messages

Prefix Description

BCM A button control message that changes the resource usage or other inner workings of a
button or a button−like control.

BCN A button control notification that notifies the control of a change in status.

BM A button message that obtains status information about the button or its appearance. This is
a general prefix used for all button−like controls.

BN A button notification that specifies a change in the button status, such as a user click. This is
a general prefix used for all button−like controls.

CB A control box specific status, resource, or setup message. Note that these entries tend to be
unique and you’ll need to watch button and edit box messages as well.

CBEM An extended control box specific status, resource, or setup message.

CDM A common dialog box message that obtains status information about the dialog box or its
appearance.

CDN A common dialog box message that specifies a change in dialog box status, such as the user
clicking the OK button.

DBT A device specific message generally used to signal a device status change, such as a
configuration change or when a user plugs in a new device.

DTM A date/time picker message that obtains status information about the control or its
appearance.

DTN A date/time picker message that specifies a change in control status, such as a change in the
date or time format.

EM An edit box message that obtains status information about the edit box or its appearance.
This is a general prefix used for all edit box–like controls.

EN An edit box notification that specifies a change in the edit box status, such as a change in
the text content. This is a general prefix used for all edit box–like controls.

LB A list box specific status, resource, or setup message.

LBN A list box message that specifies a change in list box status, such as the user
double−clicking an item. These items tend to be very specialized, so you’ll need to watch
standard button messages (BN) as well. Depending on the configuration of the list box,
you’ll want to consider the EN and CB messages as well.

LBS A list box message that specifies a change in the list box style, such as a change in the
technique used to sort list box entries.

LVM A list view message that obtains status information about the control or its appearance.

LVN A list view message that specifies a change in control status, such as an item change or
selection.

Chapter 4: Processing Windows Messages

67

LVS A list view message that specifies a change in the list view style, such as a change in the
technique used to sort list view entries. The styles are a lot more comprehensive than those
used for LBS messages. For example, there are separate styles for sorting in ascending and
descending order.

MM A multimedia message—usually hardware or media specific. For example, this group
includes messages that affect the joystick. It also includes messages that denote multimedia
events such as opening a waveform file.

SC A system control message such as a request to turn on the screensaver or shut the system
down.

TB A toolbar specific status, resource, or setup message.

TBM A trackbar specific status, resource, or setup message.

TVM A tree−view specific status, resource, or setup message.

UDM An up−down control specific status, resource, or setup message.

WM A generic Windows message used for a variety of purposes including system requests. In
some cases, the message will contain service information. For example, you’ll find a series
of WM_ADS messages that reflect changes in Active Directory Service status.

Notice that most of these message categories are user interface specific. That’s because many of the messages
that Windows handles are user−generated—a user does something and generates a message as a result. In
addition, some controls have specific status and notification classes (such as BM and BN) while others don’t
(such as CB). Windows will often classify a control as having button−like behavior. It uses the button−related
messages to handle user events and programmatic changes to those controls.

Applications can also create messages, and you’ll find custom messages for certain classes of applications.
For example, many database managers (DBMSs) use the DB message prefix to signal database events such as
a new record. In many cases, such as the DB example, you’ll find common application messages documented
in the Platform SDK help (but not in the Visual Studio .NET help).

A few Win32 API messages are application specific and you’ll generally need to consider them only when
using Visual C++ (some can be helpful in other situations). For example, the DT prefix is used for text
drawing messages. Most of these messages do appear in the Visual Studio .NET documentation because the
current version of Visual C++ .NET uses them.

Windows Message Handlers Found in the .NET Framework

The previous section might leave you feeling hopelessly mired in messages you don’t know about and aren’t
sure that you want to know about. However, we’ll see as the book progresses that you need to know about
messages because that’s the only form of communication Windows actually recognizes. In addition, Spy++
can be the most valuable tool in your Win32 API toolbox. However, you don’t need to memorize all of these
messages and you’ll find that you don’t have to worry about every message that Windows can process. You’ll
find that the .NET Framework implements the most common messages for you as event handlers. For
example, the Click() event handler is a response to the BN_CLICKED notification. The Spy++ display in
Figure 4.2 shows the messages generated for the ShowMessage application from Chapter 3 when you click
the Test button.

Windows Message Handlers Found in the .NET Framework

68

Figure 4.2: Spy++ can provide clues on which messages you need to implement.

As you can see, the parent window receives a message that the user has clicked the left button
(WM_PARENTNOTIFY with the WM_LBUTTONDOWN message as data). This message is passed to the
child window (a button, in this case), which registers the WM_LBUTTONDOWN message and takes control
of the message stream. The button also sets its state to true. The user releases the left mouse button, which
generates a WM_LBUTTONUP message and the requisite setting changes for the button. This set of events
ends a BN_CLICKED event (not shown).

The same messages occur no matter what type of application you create—managed or unmanaged. Figure 4.3
shows an example of a simple unmanaged Visual C++ application (located in the \Chapter 04\SayHello folder
of the CD). The MFC application has a few additional bells and whistles, such as the selection of a default
button, but otherwise the message sequence is the same.

Figure 4.3: Managed and unmanaged applications both generate the same sequence of messages.

Tip Sometimes it’s difficult to correlate a .NET Framework event handler with a Win32 API
message. In fact, you might not know whether the .NET Framework even provides support
for a given message. In many cases, you can create a test application that uses what you
suspect is a Win32 API message, and then see if Spy++ reports that the message is active in
the test application. If the message isn’t active, then you’ve at least eliminated some of the
.NET Framework functionality that could support the message. Because Microsoft hasn’t
provided any documentation that shows the correlation between .NET Framework event
handlers and Win32 API messages, you’ll occasionally need to perform this type of
interactive research—making Spy++ one of your best friends.

As previously mentioned, Microsoft hasn’t created a list that shows the correlation between Win32 API
messages and the event handlers found in the .NET Framework, so you need to test as you go along.
However, in general, you can count on the .NET Framework handling all general control messages, as well as
many system−related messages. For example, you’ll find that the .NET Framework handles all of the button
messages you’ll ever need, so there shouldn’t ever be a need to implement a message handler for a button.
The same holds true for edit and list boxes.

The .NET Framework doesn’t handle some system messages such as turning the screensaver on or off, or
changing the display settings. The .NET Framework doesn’t implement any of the Windows XP–specific
messages. For example, you won’t find any support for the Fast User Switching feature. All of these messages
will require some type of application support.

Windows Message Handlers Found in the .NET Framework

69

You’ll also find a lack of low−level device support in the .NET Framework. For example, general printer
commands are handled, but anything going to the parallel port (such as LPT1) isn’t. Newer devices such as
USB (Universal Serial Bus) drives are handled by the operating system for the most part, and you can access
the data they contain using standard .NET file handling calls. However, if you need to access the drive itself,
you’ll need to create special message handlers (as well as a wealth of other device handling code).

An Overview of Windows Message Functions

Windows messages don’t suddenly jump out of your application and appear in a message queue somewhere.
You need to generate the messages you want to send to another application using a function such as
SendMessage(). To receive a message, your application must provide some type of listening mechanism,
which is going to be an event in most cases. The application will need to override the standard .NET message
pump to generate the event and provide an event handler to perform some task based on the event.

This section of the chapter discusses some of the Win32 API message functions you’ll use to send and receive
Windows messages. It’s important to note that sending messages requires a complete Win32 API call setup,
while receiving messages requires hooks into the existing .NET Framework classes. In short, the information
below is a starting point—it’s the Win32 API portion of the picture. We’ll look at how all of the pieces fit
within the .NET Framework in the various examples in this chapter.

Note You might also want to look at the ScreenSaver example in Chapter 3, which demonstrates the
simplest way to send a message to Windows that results in a system action. The examples in
this chapter are a little more complex, so the Chapter 3 example is a good place to start.

SendMessage()

SendMessage() is the simplest function you can use to send messages to Windows or to other applications.
One of the best ways to test this function is to work with the system commands. You’ll find a complete test
program for the system commands in the \Chapter 04\C#\SysCommand and \Chapter 04\VB\SysCommand
folders of the CD. This example shows the full set of SC commands in action (at least those that are
documented). Figure 4.4 shows the dialog for this example, which includes a list of the SC commands, along
with one long string for testing the vertical scroll command (SC_VSCROLL).

Note Some commands in the list will only work if you trigger the Test button with the Enter key, instead of
clicking Test with the mouse. The reason is that the action takes place immediately—the mouse cursor
changes to the double−pointed or other arrow type. Unfortunately, because the mouse is already in use,
the command fails. The only way to get around this problem for testing is to use the keyboard in place of
the mouse.

An Overview of Windows Message Functions

70

Figure 4.4: The SysCommand example shows how the various system commands work.

Some of the system commands require special handling. For example, the SC_MONITORPOWER command
requires input in the lParam argument. The standard value of 0 doesn’t accomplish anything. If you input 1,
then the display will go to a low power state, while a value of 2 turns the display off. The example uses a
value of 2 to ensure that most systems will see at least a momentary power down of the screen. In some cases,
you might have to modify the display settings to get this system command to work properly. Here’s the
modified code.

DoSysCommand = (Int32)SystemCommand.SC_MONITORPOWER;
SendMessage(this.Handle, WM_SYSCOMMAND, DoSysCommand, 2);
return;

Notice that we’re still using the handle for the main window. Figure 4.5 shows another view from Spy++.
Notice that each of the major controls in the application is also a window. The window−like quality of the
controls enables you to access them by sending them messages. Of course, the control has to have some
means of responding to the messages—there’s no magic involved.

Figure 4.5: Every visible control in an application is very likely a window as well.

Warning Figure 4.5 also shows two hidden windows—those with a grayed outline. The first is for .NET
broadcasts, while the second is for GDI+, as opposed to the plain GDI used by standard Windows
applications. In most cases, you won’t want to modify these windows or send messages to

An Overview of Windows Message Functions

71

them—you might see unpredictable results.
To send a message to a control, you need to provide both a handle for the control’s window and an event
handler to listen for the message. In some cases, such as moving a window, the .NET Framework provides a
default handler. You can also add your own handler that CLR will call when the .NET portion of the call
completes. The following code shows how to obtain the handle for lbCommandSel and use it to move the list
box around.

IntPtr Temp = IntPtr.Zero; // A temporary handle.

// Load the proper system command.
DoSysCommand = (Int32)SystemCommand.SC_MOVE;

// Obtain the handle to the list box.
Temp = lbCommandSel.Handle;

// Move the list box instead of the main window.
SendMessage(Temp, WM_SYSCOMMAND, DoSysCommand, 0);
return;

You must highlight the SC_MOVE(List Box) entry in the list, tab twice to highlight the Test button, and then
press Enter. Clicking Test will cause the code to fail because the mouse is already engaged in clicking. You’ll
see the mouse cursor change to a quad−ended move cursor. Moving the mouse will move the list box. Press
Enter again and you’ll see the ending message found in the lbCommandSel_Move() method. Normally, you’d
place any code required to end the move command in this method, but the example uses a simple message
box.

PostMessage(), PostThreadMessage, and PostQuitMessage()

The PostMessage() and the SendMessage() functions perform essentially the same task—they both send a
message to the specified thread. However, the PostMessage() function returns from the call immediately,
while the SendMessage() function waits for the recipient to respond. Both functions accept essentially the
same arguments, so anything you can do with a SendMessage() call, you can do with a PostMessage() call.

You might wonder why Microsoft would include two calls with essentially the same functionality. There’s a
distinct disadvantage when using the PostMessage() call—you don’t know if anyone received the message.
It’s best to use PostMessage() when you don’t care if anyone receives or acts upon the call.

Note There are a number of superceded message functions that you’ll still find in the Platform
SDK help and in the C/C++ header files. Never use these functions within an application
because Microsoft doesn’t support them and you don’t know if they’ll work in future
versions of Windows. For example, the PostAppMessage() function has been replaced by
the PostThreadMessage() function. Unfortunately, examples of these old functions
prevail online and you even see them in the help files. Refer to the "Obsolete Windows
Programming Elements" topic in the Platform SDK help file for a list of old functions
and their replacements. This list isn’t complete, but it’s good place to start.

Both the PostMessage() and SendMessage() functions can accept special handles. However, one of these
special handles works better with PostMessage() because it doesn’t incur the delay that using SendMessage()
would incur. You can use the HWND_BROADCAST handle to tell Windows to send a particular message to
every accessible window. For example, you might use such a call to restore all of the windows as shown in
Listing 4.1. (The example code appears in the \Chapter 04\C#\MinimizeAll and \Chapter 04\VB\MinimizeAll
folders of the CD.)

PostMessage(), PostThreadMessage, and PostQuitMessage()

72

Listing 4.1: Using the HWND_BROADCAST Handle to Call All Windows

// Used to send a system command message.
[DllImport("User32.DLL")]
public static extern int PostMessage(IntPtr hWnd,
 UInt32 Msg,
 Int32 wParam,
 Int32 lParam);

// The WM_SYSCOMMAND constant used to access the SC constants.
public const Int32 WM_SYSCOMMAND = 0x112;

// The HWND_BROADCAST handle sends the message to all windows.
public IntPtr HWND_BROADCAST = new IntPtr(0xFFFF);

// A list of SC constants used for all types of system
// command access.
public enum SystemCommand
{
 SC_SIZE = 0xF000,
 SC_MOVE = 0xF010,
 SC_MINIMIZE = 0xF020,
 SC_MAXIMIZE = 0xF030,
 SC_NEXTWINDOW = 0xF040,
 SC_PREVWINDOW = 0xF050,
 SC_CLOSE = 0xF060,
 SC_VSCROLL = 0xF070,
 SC_HSCROLL = 0xF080,
 SC_MOUSEMENU = 0xF090,
 SC_KEYMENU = 0xF100,
 SC_ARRANGE = 0xF110,
 SC_RESTORE = 0xF120,
 SC_TASKLIST = 0xF130,
 SC_SCREENSAVE = 0xF140,
 SC_HOTKEY = 0xF150,
 SC_DEFAULT = 0xF160,
 SC_MONITORPOWER = 0xF170,
 SC_CONTEXTHELP = 0xF180,
 SC_SEPARATOR = 0xF00F
}

private void btnTest_Click(object sender, System.EventArgs e)
{
 // Minimize all of the windows.
 PostMessage(HWND_BROADCAST,
 WM_SYSCOMMAND,
 (Int32)SystemCommand.SC_RESTORE,
 0);
}

As you can see, using PostMessage() with the broadcast handle is essentially the same as using
SendMessage()—the main difference is that the function returns immediately. If you try using this code with
SendMessage() in place of PostMessage(), you’ll see a definite delay as SendMessage() waits for all of the
windows to return a response.

This code has an interesting side effect. Not only does it restore all of the visible windows, but it restores all
of the hidden windows as well. The resulting chaos might look unappealing, but I’ve actually learned about a

PostMessage(), PostThreadMessage, and PostQuitMessage()

73

few windows that don’t appear in the Spy++ list, but do appear on screen after using this call. Log off and
back on your machine to restore the screen—a reboot isn’t necessary to hide the hidden windows again.

A second special handle accesses the Desktop. The HWND_DESKTOP handle enables you to send messages
to the Desktop using either PostMessage() or SendMessage(). Here’s the definition for HWND_DESKTOP.

// The HWND_DESKTOP handle sends message only to the Desktop.
public IntPtr HWND_DESKTOP = new IntPtr(0);

The AddFontFile() method replicates the functionality of the AddFontResource() function of the Win32 API.
Both enable you to add private fonts to your application without registering them within Windows first. Either
form of the function works fine if you want to share your registered font with every other application running
in Windows. However, what happens if you want to keep your special font truly secret? You need to use the
AddFontResourceEx() function. This Win32 API function includes flags that keep your font secret and
prevent other applications from enumerating the font. However, no matter which function you use to load a
font, you still have to tell everyone that there was a change to the font table, which means sending a message.
The code in Listing 4.2 shows how to load the VisualUI.TTF font that appears on most hard drives with
Visual Studio .NET (among other applications) installed.

Note For best viewing results, run this example application outside of the debugger. If you load the font while
within the debugger, it tends to stay in memory until you exit the Visual Studio IDE. You can still
follow code execution within the debugger to see how the various calls work—the only problem is that
the font won’t unload. That’s because Windows associates the font with the Visual Studio IDE instead
of the application since the application is executing within the debugger environment.

Listing 4.2: Use the AddFontFileEx() Function to Load Fonts Privately.

// The function required to add a private font resource.
[DllImport("GDI32.DLL")]
public static extern int AddFontResourceEx(String lpszFilename,
 Int32 fl,
 IntPtr pdv);

// The function required to remove a private font resource.
[DllImport("GDI32.DLL")]
public static extern bool RemoveFontResourceEx(String lpszFilename,
 Int32 fl,
 IntPtr pdv);

// Flags used to define how the private font resource is loaded.
public const Int32 FR_PRIVATE = 0x10;
public const Int32 FR_NOT_ENUM = 0x20;

// Used to send a system command message.
[DllImport("User32.DLL")]
public static extern int PostMessage(IntPtr hWnd,
 UInt32 Msg,
 Int32 wParam,
 Int32 lParam);

// The WM_SYSCOMMAND constant used to access the SC constants.
public const Int32 WM_FONTCHANGE = 0x001D;

// The HWND_BROADCAST handle sends the message to all windows.
public IntPtr HWND_BROADCAST = new IntPtr(0xFFFF);

PostMessage(), PostThreadMessage, and PostQuitMessage()

74

System.Drawing.Text.PrivateFontCollection PFC;

private void btnLoadFont_Click(object sender, System.EventArgs e)
{
 // Determine which action to take.
 if (btnLoadFont.Text == "Load Font")
 {
 int Result = 0; // Results of loading the font.

 // Load the desired font.
 Result = AddFontResourceEx(
 "D:\\Program Files\\Microsoft Visual Studio .NET\\Common7\\IDE\\VisualUI.TTF",
 FR_PRIVATE,
 IntPtr.Zero);

 // Check the results.
 if (Result == 0)

 // Display an error message if necessary.
 MessageBox.Show("The font failed to load for some reason.",
 "Load Failure",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 else
 {
 // Change the button caption.
 btnLoadFont.Text = "Unload Font";

 // Tell everyone we’ve loaded a new font.
 PostMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);
 }
 }
 else
 {
 bool Result; // Results of loading the font.

 // Load the desired font.
 Result = RemoveFontResourceEx(
 "D:\\Program Files\\Microsoft Visual Studio .NET\\Common7\\IDE\\VisualUI.TTF",
 FR_PRIVATE,
 IntPtr.Zero);

 // Check the results.
 if (!Result)

 // Display an error message if necessary.
 MessageBox.Show("The font failed to unload for some reason.",
 "Unload Failure",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 else
 {
 // Change the button caption.
 btnLoadFont.Text = "Load Font";

 // Tell everyone we’ve loaded a new font.
 PostMessage(HWND_BROADCAST, WM_FONTCHANGE, 0, 0);
 }
 }
}

PostMessage(), PostThreadMessage, and PostQuitMessage()

75

private void btnDisplayDialog_Click(object sender, System.EventArgs e)
{
 // Display the font dialog.
 dlgFont.ShowDialog(this);
}

As you can see, the sample code can load and unload the VisualUI.TTF font. The AddFont−ResourceEx() and
RemoveFontResourceEx() function calls load the font publicly if you don’t specify any flags or privately if
you specify the FR_PRIVATE flag shown. Notice the use of PostMessage() in this example. You must tell
other windows about the new font or they won’t recognize it (this includes other windows in the current
application). The WM_FONTCHANGE message doesn’t require any parameters—the other windows will
create a fresh enumeration of the font list if necessary.

If you click Display Fonts immediately after loading the example application, you’ll notice that the VisualUI
is missing from the list. Load the font with the code shown in Listing 4.2 and you’ll see the VisualUI font in
the list as shown in Figure 4.6.

Figure 4.6: Loading the VisualUI font using the default code displays it in the Font dialog box.

There are some interesting changes you can make to the code in Listing 4.2. For example, try the example
with a SendMessage() in place of a PostMessage() call and you’ll see that the time differential can be
significant. Try running the call without sending the WM_FONTCHANGE message at all and you’ll notice
that not even the local application will notice it in some cases (the change becomes intermittent). Try loading
the font publicly (without any flags). Other applications such as Word will contain the font in their font list.
Reboot the machine after a public load to ensure that the font is removed from memory. Now, try using the
FR_NOT_ENUM flag when loading the font and you’ll notice that only the test application displays the font.

Note The AddFontResourceEx() function, like many of the special functions in the book, isn’t
supported by Windows 9x systems, including Windows Me. In addition, the fonts you
add using this function are only accessible for the current session—they’re unloaded as
soon as the user reboots the machine. As you can see, it’s essential to check the Platform
SDK documentation for limitations on using Win32 API functions directly.

The VisualUI.TTF font is interesting for developers, but almost useless for users, so it makes a perfect private
font. Figure 4.7 shows what this font looks like. As you can see, it contains the special font Microsoft uses for
drawing the VCR−like controls on screen. It also contains some unique graphics such as the pushpin used in
some areas of the Visual Studio IDE. Having access to these special graphics can save development time.

PostMessage(), PostThreadMessage, and PostQuitMessage()

76

Figure 4.7: The VisualUI font may not have much to offer users, but it can save some drawing time for
developers.

There are several variations on the PostMessage() function. One of the more interesting messages is
PostThreadMessage(). This form of the function enables you to post a message to the threads of the current
application. You still provide Msg, lParam, and wParam arguments. However, instead of a window handle,
you need to provide a thread identifier. The PostThreadMessage() function has several constraints, including a
special constraint under Windows 2000 and Windows XP—the thread identifier must belong to the same
desktop as the calling thread or to a process with the same Locally Unique Identifier (LUID).

You’ll almost never need to use the PostQuitMessage() function. All .NET languages have a built−in method
to perform this task and you’re better off using it whenever possible. The PostQuitMessage() tells Windows
that your application is going to exit. It includes an exit code that an external application can use to determine
the exit status of your application (generally 0 for a successful exit). It’s important to know about this function
because it does come in handy in certain rare circumstances—mainly within wrapper DLLs. You can use this
message to force an application exit when catastrophic events occur. The only time you should consider using
this message is if the application is hopelessly frozen and you still want to provide some means of exit (so the
user doesn’t have to perform the task manually). In short, for the .NET developer, this is the message of last
resort.

SendNotifyMessage()

Sometimes you need a message whose behavior depends on the circumstance in which it’s used. The
SendNotifyMessage() function combines aspects of the SendMessage() and the PostMessage() functions we
discussed earlier. When you use SendNotifyMessage() to send a message to the window process in the same
thread, it waits for a response. On the other hand, if you send the message to a window in another thread,
SendNotifyMessage() returns immediately. This duality of function ensures that you gain reliable message
transfer for the local thread, without the performance delay of waiting for other threads to complete their
work.

Warning Avoid using pointers in any asynchronous message function, including SendNotify−Message(),
PostMessage(), SendMessageCallback(), because the function will likely fail. The message call will
return before the recipient can look at the data pointed at by the pointer, which means the recipient
may not have access to the data required to complete the call. For example, the caller could
deallocate the memory used by the data immediately upon return from the call. If you need to send a
pointer as part of a message, then use the SendMessage() function to ensure that the recipient is done

SendNotifyMessage()

77

using the pointer before the message returns. While this technique does incur a performance penalty,
it also ensures that the message will complete as anticipated.

The SendNotifyMessage() function requires the same input as both SendMessage() and PostMessage(). You
can use it to send both single−window and broadcast messages.

SendMessageCallback()

The SendMessageCallback() function has two main purposes. First, it sends a message to another
process—just like the other message−related functions we’ve discussed so far. Second, it registers a callback
function with the message recipient. A callback function is a special function used by the message recipient to
return message results to the message sender. In short, this is the first function to provide a two−way
communication path for messages.

The first four arguments for the SendMessageCallback() function are the same as any other message function.
You need to provide an hWnd, msg, lParam, and wParam values. The fifth argument, lpCallBack, is a pointer
to a callback function. This requirement means you need to use a delegate to pass the address pointer. We’ll
see how this works in Chapter 5, which concentrates on callback functions. The sixth argument, dwData, is a
value that you can pass from your application, through the message recipient, and back to the callback
function. This application−defined value can provide input to the callback function that determines how it
processes the message return data.

You’ll normally use the SendMessageCallback() function to retrieve data from a device, system service, or
other data source that the .NET framework doesn’t support directly. For example, you could use this
technique to obtain an enumeration of the devices located on a USB.

GetMessage() and PeekMessage()

We’ve discussed the Windows message pump and several of the messages that can appear within the message
queue. You know that whenever an application sends a message, Windows will place the message in the
recipient’s message queue, which is essentially an “In Box” for Windows messages. However, we haven’t
discussed how the recipient actually receives the message so it can act on it. The GetMessage() and the
PeekMessage() functions provide the means for retrieving a message from the Windows message queue so the
application can act on it. Use the GetMessage() function to remove the message from the queue and the
PeekMessage() function to see if the message exists without removing it.

In most cases, you’ll never need to use the GetMessage() or the PeekMessage() functions because CLR
handles these requirements for you. However, these functions do come in handy for special messages (see the
RegisterWindowMessage() section that follows) or within wrapper DLLs. What’s most important is to
understand the mechanism used to retrieve the messages once they arrive in the queue.

The GetMessage() function requires four inputs. The lpMsg argument is the most important because it
contains a pointer to the Msg data structure used to hold the message information. When the call returns, the
Msg data structure contains the information needed to process the message. The hWnd argument contains a
handle to a window. However, you can set hWnd to null if you want to retrieve a given message for all
windows associated with the current process. The wMsgFilterMin and wMsgFilterMax arguments contain a
range of messages that you want to retrieve based on the value for each message (see the C header files for a
complete list—the various examples in the chapter have already shown you the values of specific messages).
If you want to retrieve a single message, then you set the wMsgFilterMin and wMsgFilterMax arguments to
the same value. There are also predefined range values such as WM_MOUSEFIRST and WM_MOUSELAST

SendMessageCallback()

78

that obtain specific input values.

The PeekMessage() function requires all of the arguments used by the GetMessage() function. You also need
to provide a wRemoveMsg argument value. A value of PM_REMOVE will remove the message from the
queue, while a value of PM_NOREMOVE will keep the message on the queue. Given the reason for using
PeekMessage(), you’ll probably use PM_NOREMOVE in most cases.

RegisterWindowMessage()

You’d think that with all of the messages that Windows supports natively, you’d never need to create a
message of your own. Actually, applications commonly create custom messages for intra−application
communication. Sometimes an application will spawn other processes and need to communicate with those
processes using a special set of messages. Because the messages are sent publicly with SendMessage() or
PostMessage(), Windows needs to know about them and you need to provide a unique name for them. The
purpose of the RegisterWindowMessage() function is to register a unique name for your custom message. All
you need to supply is a string containing the message name.

Creating a Windows Message Handler Example

This chapter already contains several examples that show how to send a message to Windows. Given an
application need, you can send a request to Windows to answer that need. In fact, you can affect the operation
of all of the applications running under Windows in some circumstances (as was shown with the MinimizeAll
example). However, there are times when you want to create an environment where Windows can send a
message to your application. Of course, this already happens all the time when users click buttons and enter
text, but you might have some special message that you want Windows to send to your application that the
.NET Framework doesn’t handle by default.

The example in this section shows how to create a message handler that will react when Windows sends a
specific message. To do this, we have to override the default .NET functionality for the Windows message
pump, create an event that the message pump will fire when it receives the message in question, and create an
event handler that does something when it receives an event notification. The following example is a
prototype of sorts for handling all kinds of Windows messages. You’ll see more advanced examples of this
technique in Chapter 9 when we tackle advanced Windows XP features such as Fast User Switching. You’ll
find the code for this example in the \Chapter 04\C#\ReceiveMessage and \Chapter 04\VB\ReceiveMessage
folders of the CD.

Creating the Event

The event portion of the code generates an event when requested. It will send the event to any number of
handlers—all of which must register to receive the event notification. The event portion of the code doesn’t do
anything with the event notification; it merely reacts to the event and generates the notification. This is an
extremely important distinction to consider. Listing 4.3 shows the event code for this example.

Listing 4.3: The Event Code for a Message Handler

// Create an event for the message handler to fire. We also
// have to handle this event or nothing will happen.
public delegate void DoSDCheck(object sender, System.EventArgs e);
public static event DoSDCheck ThisSDCheck;

RegisterWindowMessage()

79

// Provide a means for firing the event.
public static void Fire_ThisSDCheck(object sender, System.EventArgs e)
{
 // If there is an event handler, call it.
 if (ThisSDCheck != null)
 ThisSDCheck(sender, e);
}

As you can see, you need a delegate to define the appearance of the event handler. DoSDCheck() isn’t an
event handler; it merely acts as a prototype for the event handler. The event is an instance of the delegate. You
must make the event static or no one will be able to call it.

Once you have an event defined, you need a way to fire it. Microsoft doesn’t define the name of the method
for firing an event in any concrete terms, but standard practice is to preface the event name with the word
“Fire” followed by an underscore, so the name of this method is Fire_ThisSDCheck(). Firing an event can
require a lot of work; but generally all you need to do is verify that the event has at least one handler, and then
call the event. This step will call every assigned event handler in turn to process the event notification.

Creating the Windows Message Loop Override

The most important tip you can remember about processing messages is that the .NET Framework will only
handle the messages that applications commonly use. If you need any other functionality in your application,
then you need to add it. Common functionality includes messages associated with the mouse and the
keyboard—it doesn’t include messages associated with a shutdown.

Tip Sometimes the Platform SDK documentation is simply wrong. For instance, the documentation for the
WM_QUERYENDSESSION message used in this example tells you that it’s sent in response to an
ExitWindows() function call. Unfortunately, Windows XP doesn’t support the ExitWindows() function,
so there’s no hope of making this function work properly given the documentation. You need to use the
ExitWindowsEx() function instead. The best way to find this information is to use the Dependency
Walker to view User32.DLL and see if it supports the ExitWindows() function. The answer becomes
obvious during the few seconds it takes to check the DLL.

With this in mind, you have to rewrite the message pump to do something with the messages that you want to
handle. This means overriding the default message pump, and then calling the base message pump to handle
any messages that your code doesn’t handle. The two−step process is important. If you don’t call the base
function, then any messages your code doesn’t handle will go unanswered. Of course, you can always use this
technique to force an application to handle just a few messages and ignore everything else—a somewhat
dangerous proposition unless you know exactly what you’re doing. Listing 4.4 shows the message pump
override required for this example.

Listing 4.4: Always Override the Message Pump to Handle Custom Messages

// We need to know which message to monitor.
public const Int32 WM_QUERYENDSESSION = 0x0011;
public const Int32 WM_ENDSESSION = 0x0016;

protected override void WndProc(ref Message ThisMsg)
{
 // See which message Windows has passed.
 if ((ThisMsg.Msg == WM_QUERYENDSESSION) ||
 (ThisMsg.Msg == WM_ENDSESSION))

Creating the Windows Message Loop Override

80

 {
 // Fire the event.
 Fire_ThisSDCheck(this, null);

 // No more processing needed.
 return;
 }

 // If this isn’t a session end message, then pass the
 // data onto the base WndProc() method. You must do this
 // or your application won’t do anything.
 base.WndProc(ref ThisMsg);
}

The code for the message pump is relatively straightforward. All you need to do is check for the session
ending messages, and then fire the event. Notice that we return from this function without providing a positive
response to Windows. This omission enables the application to cancel the shutdown. If you want to allow the
system to shut down, you must set the ThisMsg.Result value to true.

Creating the Event Handler

The event handler for this example doesn’t do much—it displays a message box saying it received a
notification. However, it’s important to realize that the message handler could do anything within reason.
Windows sets a time limit for responding to a shutdown message. If your event handler is code heavy, your
application won’t respond in time and Windows will try to shut it down manually. Listing 4.5 shows the event
handler for this example.

Listing 4.5: The Event Handler for the Example Is Simple and Fast

public frmMain()
{
 // Required for Windows Form Designer support
 InitializeComponent();

 // Add an event handler for the shutdown check.
 ThisSDCheck += new DoSDCheck(OnShutDownCheck);
}

// Create an event handler for the shutdown event.
private void OnShutDownCheck(object sender, System.EventArgs e)
{
 // Display a message showing that we received the message.
 MessageBox.Show("Windows sent an end session message",
 "End Session Message",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
}

Notice that you must register the event handler. Otherwise, it won’t receive event notifications. In this case,
the example registers the event handler in the constructor, which is a good place for the registration for most
applications. If an event handler is important enough to monitor messages from Windows, you’ll want to
register it during the application startup process.

Creating the Event Handler

81

Demonstrating the Windows Message Handler

In older versions of Windows you simply told the operating system that you wanted to shut down, and that
was the end of the process. Newer versions of Windows require a little more information, and Windows XP
makes it downright impossible to shut down unless you have a good reason. For this reason, the code for
initiating a Windows shutdown is a bit long. Listing 4.6 provides you with the essentials.

Listing 4.6: Using the ExitWindowsEx() Function to Shut Windows Down

// Used to send a message that starts the screen saver.
[DllImport("User32.DLL")]
public static extern int ExitWindowsEx(UInt32 uFlags,
 UInt32 dwReason);

// A list of flags that determine how the system is shut down.
public enum ShutdownFlag
{
 EWX_LOGOFF = 0,
 EWX_SHUTDOWN = 0x00000001,
 EWX_REBOOT = 0x00000002,
 EWX_FORCE = 0x00000004,
 EWX_POWEROFF = 0x00000008,
 EWX_FORCEIFHUNG = 0x00000010
}

// A list of major reasons to shut the system down.
public enum ReasonMajor
{
 SHTDN_REASON_MAJOR_OTHER = 0x00000000,
 SHTDN_REASON_MAJOR_NONE = 0x00000000,
 SHTDN_REASON_MAJOR_HARDWARE = 0x00010000,
 SHTDN_REASON_MAJOR_OPERATINGSYSTEM = 0x00020000,
 SHTDN_REASON_MAJOR_SOFTWARE = 0x00030000,
 SHTDN_REASON_MAJOR_APPLICATION = 0x00040000,
 SHTDN_REASON_MAJOR_SYSTEM = 0x00050000,
 SHTDN_REASON_MAJOR_POWER = 0x00060000
}

// A list of minor reasons to shut the system down. Combine
// these reasons with the major reasons to provide better
// information to the system.
public enum ReasonMinor
{
 SHTDN_REASON_MINOR_OTHER = 0x00000000,
 SHTDN_REASON_MINOR_NONE = 0x000000ff,
 SHTDN_REASON_MINOR_MAINTENANCE = 0x00000001,
 SHTDN_REASON_MINOR_INSTALLATION = 0x00000002,
 SHTDN_REASON_MINOR_UPGRADE = 0x00000003,
 SHTDN_REASON_MINOR_RECONFIG = 0x00000004,
 SHTDN_REASON_MINOR_HUNG = 0x00000005,
 SHTDN_REASON_MINOR_UNSTABLE = 0x00000006,
 SHTDN_REASON_MINOR_DISK = 0x00000007,
 SHTDN_REASON_MINOR_PROCESSOR = 0x00000008,
 SHTDN_REASON_MINOR_NETWORKCARD = 0x00000009,
 SHTDN_REASON_MINOR_POWER_SUPPLY = 0x0000000a,
 SHTDN_REASON_MINOR_CORDUNPLUGGED = 0x0000000b,
 SHTDN_REASON_MINOR_ENVIRONMENT = 0x0000000c,
 SHTDN_REASON_MINOR_HARDWARE_DRIVER = 0x0000000d,
 SHTDN_REASON_MINOR_OTHERDRIVER = 0x0000000e,

Demonstrating the Windows Message Handler

82

 SHTDN_REASON_MINOR_BLUESCREEN = 0x0000000F,
 SHTDN_REASON_UNKNOWN = SHTDN_REASON_MINOR_NONE
}

// A list of reason flags that provide additional information about the
// cause of shutdown. Combine these flags with the major and minor reason
// values.
public enum ReasonFlag : uint
{
 SHTDN_REASON_FLAG_USER_DEFINED = 0x40000000,
 SHTDN_REASON_FLAG_PLANNED = 0x80000000
}

private void btnTest_Click(object sender, System.EventArgs e)
{
 // Exit Windows.
 ExitWindowsEx((UInt32)ShutdownFlag.EWX_LOGOFF,
 (UInt32)ReasonMajor.SHTDN_REASON_MAJOR_APPLICATION &
 (UInt32)ReasonMinor.SHTDN_REASON_MINOR_MAINTENANCE &
 (UInt32)ReasonFlag.SHTDN_REASON_FLAG_PLANNED);
}

There are a lot of predefined reasons for shutting the system down and you should choose one of them within
your application. Generally, you’ll choose the appropriate ShutdownFlag value for the first argument. Notice
that there are options for logging off, performing a normal reboot, and forcing a shutdown for a hung
application. This last option should be used with care, but it’s a valuable option if an application detects that it
has frozen and the system is in an unstable state. (Of course, recovering from the condition is even better.)

I decided to split the second argument into three enumerations because each enumeration performs a different
task. You should always include a ReasonMajor value as part of the shutdown. The ReasonMinor value
further defines the reason for the shutdown but isn’t essential. Finally, you can pass a ReasonFlag value if one
of the values happens to meet your needs.

Developing for Thread Safety

You might think that all of the convoluted code in this example could be straightened out and made simpler.
The fact is that the technique shown in this example becomes more important as the complexity of your code
increases. The moment you introduce a second thread into the application, the need for all of the convoluted
code becomes essential. Using events as we have here keeps the message handling in the main thread.

One of the Visual Studio IDE windows that you need to look at is the Threads window. Unfortunately, the
Visual Studio IDE hides this window by default and most developers don’t find it because it’s hidden on the
Debug menu instead of the View menu. To display the Threads window, use the Debug Ø Windows Ø
Threads command. Figure 4.8 shows an example of the Threads window for the current application.

Figure 4.8: The Threads window can be helpful in diagnosing problems with a Win32 API message handler.

Any code that changes the appearance of a Windows Form must execute from the main thread of the
application. This is why you want to use an event handler for your message handling code. Using an event

Developing for Thread Safety

83

handler means that no matter which thread intercepts the message you want to process, the main thread will
perform the actual processing.

Where Do You Go from Here?

This chapter has demonstrated various uses for Windows messages in managed applications. Like unmanaged
Windows applications, managed applications use messaging to communicate between applications and the
operating system. Knowing which Windows messages the .NET Framework supports natively can help you
determine when you need to create a handler for non−standard messages.

We’ve discussed the correlation between some .NET Framework event handlers and the Win32 API
messages. Create a small test application and use Spy++ to verify the messages that it responds to. Add
objects such as menus to see the effect on the output messages. Remember to limit the message selections in
Spy++ so that you can actually see the messages of interest—some messages (especially those for mouse
handling) appear with such regularity that it’s hard to see the messages that appear only when specific events
occur.

Make sure you try out all of the examples on the CD. There are places in the chapter where I mention an
example but don’t go completely through the code, because most of it has appeared in other chapters. It’s still
important to check the example out because you’ll learn techniques for working with messages by using them.
Especially important are some of the system commands that aren’t handled very well by the .NET
Framework.

Now that you know about messages, it’s time to look at the last generic feature for Win32 API
programming—the callback function. Chapter 5 tells you how Windows uses callback functions for various
tasks and when you’ll need to use them for your Win32 API call. Callback functions are important because
they provide a mechanism for Windows to interact with an application. Essentially, the application makes a
request and Windows answers it through the callback function. This asynchronous handling of application
requests enables Windows to run more efficiently, but does add to the developer’s workload.

Where Do You Go from Here?

84

Chapter 5: Using Callback Functions

Overview

Chapter 4 provided you with a glimpse of some of the internals of the Win32 API. Message processing is a
cornerstone of application development with the Win32 API, but it’s only part of the equation. When an
application sends a message, it hopes that another application will respond. Likewise, when an external
application sends a message to your application, it’s looking for a response. The problem is that this approach
isn’t two−way—it’s a one−way communication from one application to another.

Callback functions provide the potential for two−way communication. When you make some calls to the
Win32 API, you have to supply a pointer to a function that receives the response. This technique enables the
Win32 API to provide two−way communication. A request from your application results in a response from
the Win32 API to a specific point in your application. Two−way communication has important implications
for the developer, as we’ll discuss in this chapter.

After you gain an understanding of how callback functions work, we’ll look at a callback function example.
As you might imagine, getting callback functions to work under .NET is considerably more difficult than
working in a pure unmanaged environment because you now have the managed environment to consider. It’s
not an impossible task, but there are certain restrictions you have to consider and a few programming
techniques you’ll want to learn.

Tip Sometimes it’s helpful to chat with other developers about questions you have in
working with complex code. The VB World site at http://www.vbforums.com/ offers
both general and specific topic messaging areas. This site also offers general areas for
discussions about other languages such as C#. VB World is exceptionally nice for those
developers who prefer a Web interface to the usual newsgroup reader.

What Is a Callback Function?

As previously mentioned, callback functions provide two−way communication. However, a callback function
is more than a messaging technique—it’s the Win32 API version of the asynchronous call. Your application
makes a request and supplies the address of a callback function within your application. Windows will use this
address as a communication point for the responses for your request. In many cases, Windows will call this
function more than once—some callback functions are called once for each response that the Windows API
provides.

Callback functions are important because they allow Windows to provide multiple responses for a single
query. For example, when you want to scan the current directory on a hard drive, you actually need one
response for each object in that directory. The same holds true for other response types. In this regard, you can
view a callback function as a primitive form of collection. However, instead of gaining access to a single
object that you have to parse one element at a time, the callback function provides individual elements from
the outset.

Tip We’ll create more than a few callback functions as the book progresses. However, you might also want to
view callback functions created by other developers. The Code Project includes a few examples of
callback function coding on its site at http://www.codeproject.com/win32/ and
http://www.codeproject.com/staticctrl/. As mentioned on the page, many of these examples are unedited.

85

Another interesting discussion appears on the C# Corner site at
http://www.c−sharpcorner.com/3/ExploringDelegatesFB002.asp. I found this example a little convoluted,
but some people may find it useful. The 4GuysFromRolla.com site at
http://4guysfromrolla.411asp.net/home/tutorial/specific/system/delegate?cob=4guysfromrolla contains a
number of interesting examples of both delegates and callback functions. Unfortunately, some of the code
is also based on Beta 1 of Visual Studio .NET, so you’ll need to select examples with care.

Most callback functions have a specific format because you need to know specifics about the object, such as
the object type. The use of a specific format also provides a standard communication format between the
Win32 API and the requesting application. The message format provides a means of passing information in a
specific manner between the Win32 API and the calling application.

In many cases, a callback function can also provide feedback to the message sender. For example, you might
not want to know the names of all of the files in a directory—you might only need one file. Once the
application finds what it needs, it can tell the Win32 API to stop sending information. We’ll see this particular
feature in many applications in the book, even the MMC snap−in example in Chapter 12.

Like messages, the .NET Framework also has to provide support for callback functions. However, in this case
you can’t interact with the callback function directly. What you see instead is a collection that contains the
requested data. In most cases, this loss of intermediate result control is a non−issue. There are a few
situations, such as a file search, when you can gain a slight performance boost using an actual callback
function. In general though, you should only rely on callback functions when the .NET Framework doesn’t
provide the desired functionality.

Using Callback Functions

Now that you have a better idea of what a callback function is and how you’d use it, let’s look at some
practical issues for using callback functions. The following sections describe the callback function prototypes
and essential design techniques. You’ll learn about callback function design using a simple example.

The point of this section is to provide you with a template that you can use in developing other types of
callback functions for your applications. The essential task list remains the same, even when the callback
function you use changes. For example, you’ll always use a delegate to provide a callback address for the
Win32 API function—no matter how complex the Win32 API function is or what task it ultimately performs.

An Overview of Callback Function Prototypes

Callback functions are unique, in some respects, because they provide a feedback method from Windows to
the application. To ensure that Windows and the callback function use the same calling syntax (a requirement
for communication), the Platform SDK documentation provides a set of callback function
prototypes—essentially a description of the callback function argument list.

Note This chapter doesn’t discuss the special callback function prototypes for DirectX. For a discussion of
DirectX callback function prototypes, see the DirectX Callback Function Prototypes section of Chapter
14. In many ways, the DirectX callback prototypes look and act the same as the prototypes in this
chapter. However, the calling syntax is quite specific, so you need to know more about them before
working with DirectX in applications.

Using Callback Functions

86

When you make a system request that includes a callback function, you need to supply the address of the
callback function matching the function prototype for that call. For example, the EnumWindows() and
EnumDesktopWindows() functions both use the same function prototype in the form of the
EnumWindowsProc() shown in the following code.

BOOL CALLBACK EnumWindowsProc
(
 HWND hwnd, // handle to parent window
 LPARAM lParam // application−defined value
);

In order to use either the EnumWindows() or the EnumDesktopWindows() function, you must provide the
address of a prototype function that includes the handle to a parent window and an application−defined value.
The prototypes for other callback functions are all standardized, but vary according to the Win32 API call that
you make. It’s important to research the callback function to ensure you supply one with the proper arguments
in the right order.

Tip Arguments for callback functions follow the same rules as function and message calls. For
example, you’ll still use an IntPtr for a handle. It pays to check the argument list carefully
so that you can avoid defining application−supplied and −reserved arguments incorrectly.

Unfortunately, the prototype description won’t tell you about the purpose of the application−defined value. To
learn about the application−defined value, you need to look at the documentation for the individual functions.
In the case of EnumWindows() and EnumDesktopWindows(), you don’t receive any additional information
from the application−defined value unless that information is passed as part of the original call.

The only piece of information your callback function will receive from the EnumWindows() function is a
handle to the window. The function will continue to call your callback function with one window handle at a
time until your callback function returns false (indicating you don’t need any more data) or the function runs
out of handles to return. You can use the window handle in a number of ways. For example, you could send
the window a message as we did in Chapter 4. However, there are a number of other window−related
functions that have nothing to do with messaging—you could simply learn more about the window using the
GetWindowText() or GetWindowInfo() functions.

Implementing a Callback from the Managed Environment

It’s time to look at the first callback example. This example is designed to break the callback creation process
down into several discrete steps. In this case, we’ll discuss what you need to do to enumerate the current
windows. Enumerating the windows is the first step in discovering windows that you might want to
communicate with—an important part of the messaging process. The source code for the example appears in
the \Chapter 05\C#\EnumWindows and \Chapter 05\VB\EnumWindows folders of the CD.

Creating a Delegate

The first task you need to perform in creating a callback function is to define a delegate to represent the
function. You can’t pass the address of a managed function to the unmanaged environment and expect it to
work. The delegate provides the means for creating a pointer that CLR can marshal. We’ll see as the example
progresses that the delegate is easy to use but important in effect.

Tip In general, you’ll use an event setup (as shown in Chapter 4) to handle Windows messages.
However, you’ll use delegates to enable use of callbacks. The main reason you want to use events

Implementing a Callback from the Managed Environment

87

to handle Windows messages is to allow someone inheriting from your code to access the message
without worrying about the details of the Windows message. In addition, this technique works
better where multiple threads are involved. Make sure you check thread safety when handling both
Windows messages and callbacks. Normally, thread safety is less of a concern when handling
callbacks, so the delegate technique shown in this chapter works fine.

The delegate you create must match the callback function prototype. In fact, giving the delegate the same
name as the prototype helps document your code for other developers. Notice that the delegate shown in the
following requires an IntPtr for the window handle and an Int32 for the lParam.

// Create the delegate used as an address for the callback
// function.
public delegate bool EnumWindowProc(IntPtr hWnd, Int32 lParam);

Creating the Callback Function

The callback function performs the actual processing of the data returned by the call to the Win32 API
function. The main thread of your application will go on to perform other tasks while the callback function
waits for data. Listing 5.1 shows the callback function used for this example.

Listing 5.1: Creating the Callback Function

// Define a function for retrieving the window title.
[DllImport("User32.DLL")]
public static extern Int32 GetWindowText(IntPtr hWnd,
 StringBuilder lpString,
 Int32 nMaxCount);

// Create the callback function using the EnumWindowProc()
// delegate.
public bool WindowCallback(IntPtr hWnd, Int32 lParam)
{
 // Name of the window.
 StringBuilder TitleText = new StringBuilder(256);

 // Result string.
 String ResultText;

 try
 {
 // Get the window title.
 GetWindowText(hWnd, TitleText, 256);
 }
 catch (Exception e)
 {
 MessageBox.Show("GetWindowText() Error:\r\n" +
 "\r\nMessage: " + e.Message +
 "\r\nSource: " + e.Source +
 "\r\nTarget Site: " + e.TargetSite +
 "\r\nStack Trace: " + e.StackTrace,
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }

 // See if the window has a title.
 if (TitleText.ToString() == "")

Implementing a Callback from the Managed Environment

88

 ResultText = "No Window Title";
 else
 ResultText = TitleText.ToString();

 // Add the window title to the listbox.
 txtWindows.Text += ResultText + "\r\n";

 // Tell Windows we want more window titles.
 return true;
}

As you can see, the WindowCallback() relies on the GetWindowText() function to display the name of the
window in a textbox on the dialog. The use of an IntPtr as one of the inputs is hardly surprising, because it
contains the handle to the window pass to WindowCallback() by Windows. Remember that in the past we
always used a String to pass text data to the Win32 API function. The GetWindowText() function requires a
different technique, however, because it actually creates the string—it allocates the memory for the string and
places the data in it. Using a StringBuilder object enables the GetWindowText() function to behave as normal.
If you try to use a standard String in this case (even one passed with the out or ref keyword) the function call
will fail and the user will see an error on screen.

Notice that the use of a StringBuilder object becomes clearer in the WindowCallback() function. The code
allocates a StringBuilder object of a specific size. It then passes this size to the GetWindowText() function in
the third argument, nMaxCount.

Warning Depending on how you set up your callback function, it’s possible that the callback
function will operate in a different thread from the main form. When the callback function
operates in a separate thread, it can’t change the content of the main form; otherwise, you
might run into thread−related problems with the applications (see the “Developing for
Thread Safety” section of Chapter 4 for details). It pays to validate your application for
thread safety by viewing the callback function in the debugger using the Threads window.
If you see that the application creates a new thread, then you’ll need to use an event to
trigger changes to the display area.

Always place the GetWindowText() and other string manipulation functions within a try…catch block as
shown in the code. These functions tend to fail, at times, even if your code is correct. Unfortunately, there
isn’t any documented reason for the failure and it occurs intermittently—making the cause exceptionally
difficult to track down. The example code shows the minimum error message you should provide as output if
the GetWindowText() call fails. You might consider checking the inner error messages as well as using the
GetLastError() function to return any Windows−specific information about the error.

A successful call to GetWindowText() is no guarantee that TitleText will contain any data on return from the
call. In fact, you’ll find that many of the hidden windows have no title bar text at all, which means that
GetWindowText() will return an empty string. With this in mind, you’ll want to create a standard string and
place either a default value or the contents of TitleText within it. ResultText contains the string that we’ll
actually display on screen. The display code is straightforward—you simply add to the text already found in
the textbox.

Notice that GetWindowText() always returns a value of true. Because we want the name of every window on
the desktop, you have to keep returning true. However, not every callback function will require all of the data
that Windows has to provide. If this is the case, you’ll want to add an end of data check and return false if the
function has all of the data it needs.

Implementing a Callback from the Managed Environment

89

Demonstrating the EnumWindows() and EnumDesktopWindows() Callback Functions

At this point, you have a delegate to provide a pointer to the callback function and a callback function to
process the data. All you need is some way to call the Win32 API function with the callback function as one
of the arguments. Listing 5.2 shows how to accomplish this task.

Listing 5.2: Code for Enumerating all Windows or a Single Desktop

// Create the prototype for the EnumDesktopWindows() function.
[DllImport("User32.DLL")]
public static extern void EnumDesktopWindows(IntPtr hDesktop,
 EnumWindowProc EWP,
 Int32 lParam);

// Create the prototype for the EnumWindows() function.
[DllImport("User32.DLL")]
public static extern void EnumWindows(EnumWindowProc EWP,
 Int32 lParam);

private void btnTest_Click(object sender, System.EventArgs e)
{
 // Create an instance of the callback.
 EnumWindowProc PWC = new EnumWindowProc(WindowCallback);

 // Clear the text window.
 txtWindows.Clear();

 // Call the EnumWindows() function.
 EnumWindows(PWC, 0);
}

private void btnTest2_Click(object sender, System.EventArgs e)
{
 // Create an instance of the callback.
 EnumWindowProc PWC = new EnumWindowProc(WindowCallback);

 // Clear the text window.
 txtWindows.Clear();

 // Call the EnumDesktopWindows() function.
 EnumDesktopWindows(IntPtr.Zero, PWC, 0);
}

The example provides both a general and a desktop−specific version of the windows enumeration functions,
EnumDesktopWindows() and EnumWindows(). Notice that the EnumDesktopWindows() function prototype
uses an IntPtr for the window handle as usual. However, the callback function pointer is marked as the
EnumWindowsProc delegate. This isn’t an error—you actually pass the delegate as a pointer in the code. The
final argument is the lParam that you can use for application−specific data (we won’t for this example).

Look at the btnTest_Click() and btnTest2_Click() methods. The first method is used for general windows
enumeration, while the second is used for desktop−specific enumeration. Both follow the same sequence of
steps to gain access to the appropriate Win32 API function.

The code begins by creating an instance of the EnumWindowProc delegate with the WindowCallBack()

Implementing a Callback from the Managed Environment

90

function as a pointer. The code clears the textbox so you don’t see the previous data. It then calls the
appropriate windows enumeration function. When you run this code, you’ll see that the Win32 API begins
sending the callback function data almost immediately. Figure 5.1 shows the results.

Figure 5.1: The test application shows a complete list of windows for the system.

It shouldn’t be too surprising that there are a lot of unnamed windows listed in the example. Windows
constantly creates hidden windows that perform tasks silently in the background. However, looking through
the list of windows that do have names can prove interesting. For example, the example detected a previously
unknown “.NET−BroadcastEventWindow.1.0 .3300.0.1” window.

The point is that you can list the windows as needed. Other functions, such as the GetTitle− Bar() function
provide more information about each window, including the presence and use of various common buttons. For
example, you’d use the GetTitleBar() function to determine if the window in question has a functional
Minimize button. The more generic GetWindowInfo() function tells you about the window’s features and
setup. For example, you can determine the location and size of the window, as well as its style information.

Implementing a Callback from a Wrapper DLL

There are going to be times when you use a callback function so often that placing it into each of your
applications individually doesn’t make sense. However, creating a lot of duplicate code isn’t the only reason
to use the wrapper DLL. The following list provides some additional reasons you should use this technique in
your next application.

Packaging Issues Using a wrapper DLL enables you to package the calling details in a way that you can’t do
normally. Using a DLL becomes a matter of convenience because the developer sees a package, not lines of
code. In addition, when you work with a team of developers, you might want to hide the details of the Win32
API call to make the function easier to use.

Team Development Issues The biggest advantage for a team is that one group of developers can work on
Win32 API calls while other groups work on application code. The use of a DLL detaches one effort from the
other and allows both groups to work independently. In addition, because everyone’s using the same DLL,
you can ensure better consistency among developers, making the resulting code easier to read.

Learning Curve and Training Issues Another advantage is learning curve. Many of the developers working
on a team will know their base language well, but won’t know much about the Win32 API, so trying to get
them up to speed represents a significant training cost. Having a team that specializes in making the Win32
API fully accessible to other members on your team makes sense because Microsoft will almost certainly fill
many of the holes in the next version of Visual Studio. (It’s unlikely that Microsoft will ever fill all of the
holes, which means you’ll always need someone who can work with the Win32 API.)

Implementing a Callback from a Wrapper DLL

91

The example in this section duplicates the functionality of the EnumWindows example presented earlier in the
chapter. However, instead of placing all of the Win32 API code within the dialog−based application, it will
appear within a wrapper DLL. The dialog−based application will see a collection in place of the
Windows−specific data. The example serves to demonstrate two elements of using a wrapper DLL.

The initial development effort is harder because you need to write more code and the wrapper DLL
code has to interact with the application.

•

Using the DLL in subsequent development efforts is easier than including the Win32 API code,
because the developer need not understand the Win32 API to make the required call.

•

Creating the Library DLL

The first step in creating this example is to create the wrapper DLL. For the purposes of the example, the
wrapper DLL and dialog−based application appear in the same folder on the CD, but you could easily place
each element in a separate folder. Listing 5.3 contains the DLL code for the example. You’ll find the source
code for this example in the \Chapter 05\C#\LibraryAccess and the \Chapter 05\VB\LibraryAccess folders of
the CD.

Note Listing 5.3 contains only the code for the EnumWindows() function. The
EnumDesktopWindows() function code is essentially the same. You can see the minor
differences by looking at the source code on the CD.

Listing 5.3: The DLL Contains All the Win32 API Calls and Returns a Collection

public class AllWindowCollection : CollectionBase
{
 // We could place the code for calling the windows enumerator
 // in the constructor, but using the Fill() function adds more
 // control and becomes important in the DesktopWindowCollection
 // class.
 public AllWindowCollection()
 {
 }

 // Create the delegate used as an address for the callback
 // function.
 private delegate bool EnumWindowProc(IntPtr hWnd, Int32 lParam);

 // Create the prototype for the EnumWindows() function.
 [DllImport("User32.DLL")]
 private static extern void EnumWindows(EnumWindowProc EWP,
 Int32 lParam);

 // Fills the collection with data you can access using the
 // Item() function.
 public void Fill()
 {
 // Create an instance of the callback.
 EnumWindowProc PWC = new EnumWindowProc(WindowCallback);

 // Call the EnumWindows() function.
 EnumWindows(PWC, 0);
 }

 // Obtains a specific window title string from the collection
 // and returns it to the caller.

Implementing a Callback from a Wrapper DLL

92

 public string Item(int Index)
 {
 return (string)List[Index];
 }

 // Define a function for retrieving the window title.
 [DllImport("User32.DLL")]
 private static extern Int32 GetWindowText(IntPtr hWnd,
 StringBuilder lpString,
 Int32 nMaxCount);

 // Create the callback function using the EnumWindowProc()
 // delegate.
 private bool WindowCallback(IntPtr hWnd, Int32 lParam)
 {
 // Name of the window.
 StringBuilder TitleText = new StringBuilder(256);

 try
 {
 // Get the window title.
 GetWindowText(hWnd, TitleText, 256);
 }
 catch (Exception e)
 {
 // Throw an exception when required.
 throw new Exception("Error Accessing Window Titles", e);
 }

 // See if the window has a title.
 if (TitleText.ToString() == "")
 List.Add("No Window Title");
 else
 List.Add(TitleText.ToString());

 // Tell Windows we want more window titles.
 return true;
 }
}

Listing 5.3 shows that there are some differences between a wrapper DLL version of a Win32 API call and the
application version. (There are also many similarities between the two implementations—you still need to
perform the same set of tasks as before.) Notice that all of the Win32 API calls are declared private, to hide
them from view and protect their functionality. In addition, this class inherits from the CollectionBase class,
so it already has much of the functionality required for a collection.

The Fill() function is new. It takes the place of the btnTest_Click() function in the previous example.
However, notice that this function never touches the form objects, so you don’t have to worry about thread
concerns. The Fill() function is also simpler than the btnTest_Click() function—not that complexity was a
problem with the previous example.

You also have to include an Item() function with the collection so that the user can gain access to the
collection elements. You can make this function as simple or complex as you like. The example shows a basic
implementation that returns the requested element from the List object inherited from the CollectionBase
class. One of the additions you might want to make is a range check to ensure the input isn’t out of range.

Implementing a Callback from a Wrapper DLL

93

The WindowCallback() has changed from the previous example. For one thing, the try…catch block throws
an exception now instead of displaying an error message. Using this approach ensures that the developer using
your library has full access to all of the error information from the call. Another change is that we’re adding
items to the List object now instead of creating the output directly. Again, this change ensures there are no
threading problems with the application because the callback function isn’t touching any of the form objects.

The biggest change is simplicity for the developer using the new library. Figure 5.2 shows the Object Browser
view of the library. Notice that the interface is exceptionally simple—most of the functionality appears within
the CollectionBase class and isn’t even implemented in your code. Any developer who’s worked with
collections in the past will understand how your collection works as well. A simple interface combined with
common usage techniques makes the library approach hard to beat in this case. Of course, you do have to
perform additional work at the outset, which can be viewed as a disadvantage.

Figure 5.2: The Object Browser view says it all—libraries make Win32 API calls easy to use.

Creating the Dialog−Based Application

Once you create a wrapper DLL for the Win32 API calls, creating the application to use the functionality that
the wrapper DLL provides is relatively simple. The example uses a collection to hold the information gathered
by the Win32 API call, so you’ll create a function to access the collection as shown in Listing 5.4.

Note Listing 5.4 contains only the code for the btnTest_Click() function. The btnTest2_Click() function code
is essentially the same. You can see the minor differences by looking at the source code on the CD.

Listing 5.4: The Dialog−Based Application Code Looks Like Any C# Code

private void btnTest_Click(object sender, System.EventArgs e)
{
 // Create a StringBuilder object to hold the window strings.
 StringBuilder WindowList = new StringBuilder();

 // Create an instance of the collection.
 AllWindowCollection AWC = new AllWindowCollection();

 // Fill the collection with data.
 AWC.Fill();

 // Clear the textbox contents.
 txtWindows.Clear();

 // Create a single string with the contents of the collection.

Implementing a Callback from a Wrapper DLL

94

 for (int Counter = 0; Counter < AWC.Count; Counter++)
 WindowList.Append(AWC.Item(Counter) + "\r\n");

 // Display the string on screen.
 txtWindows.Text = WindowList.ToString();
}

This code makes some improvements over the previous example and you’ll likely notice the difference when
you use this function with a lot of windows open. The StringBuilder object, WindowList, provides a
significant performance boost because you don’t have to rebuild the string for every collection entry. A
StringBuilder uses the Append() function to add new strings to the contents of the object. You’ll find that
using a StringBuilder also saves resources because the code isn’t creating a new string for every iteration of
the for loop.

Instead of worrying about Win32 API functions, the example creates the AllWindowCollection object. If you
look at the functions provided by this object, you’ll see a list that combines the custom functions we created
with a list of generalized collection functions. For example, you can use the Clear() function to empty the
collection, even though that function isn’t implemented in the custom code.

The code calls the Fill() function to fill the collection object, AWC, with data. This function is all that the
developer using the wrapper DLL needs to know in order to make the Win32 API calls discussed earlier.
When the call returns, AWC contains a complete list of the window titles for the current machine.

The next step is to place the formatted string into WindowList. The example uses all of the strings, but you
can easily filter the strings because we’re using a collection. For that matter, you can also sort the strings and
perform other tasks that the initial example code can’t do with any ease. Notice that AWC has a Count
property that makes iterating through the items in the collection easy.

The final step is to place the string into the textbox. Notice that we have to use the ToString() function
because C# views the StringBuilder object as something other than a string reference. The output of this
example is precisely the same as the output of the first example. You’ll see a display that looks like the one
shown in Figure 5.1.

Enumerating Calendar Information Example

The .NET Framework provides a vast array of classes for handling international information. You’ll find them
in the System.Globalization namespace. There’s so much functionality that sometimes it’s hard to find
precisely what you need. However, even given the rich array of functions that the .NET Framework provides,
there are still times when you need a simple way to list information about a culture. For example, what does a
particular culture call the days of the week or the months of the year? The example in this section of the
chapter is meant to augment what the .NET Framework already provides. (The fact is that the .NET
Framework provides far better functionality overall than the Win32 API in this case.)

This example also brings up a new topic: what do you do with macros? Visual C++ developers have long been
familiar with the functionality provided by macros, something that other languages don’t support very well
without a lot of work. There are two ways to handle the macros. You can create a Visual C++ wrapper and
call the macro directly, or you can simulate the macro using managed code. Generally, you’ll find that the
Visual C++ wrapper method is easier and less error prone, so that’s the method we’ll use in this example.

Enumerating Calendar Information Example

95

Tip Microsoft has a made a wealth of .NET training information available
through the Microsoft Developer Network (MSDN) Academic Alliance
(MSDNAA) site (http://www.msdnaa.net/technologies/dotnet.asp). Make
sure you spend some time at this site looking through the
offerings—including those that relate to delegates and callback functions.

Now that you have some idea of what this example will show, let’s look at some source code. The following
sections tackle the various problems of enumerating calendar values using a Win32 API function with
callback. You’ll find the source code for this example in the \Chapter 05\C#\CalendarCheck and \Chapter
05\VB\CalendarCheck folders of the CD. The macro wrapper DLL source code is located in the \Chapter
05\C#\CalendarCheck\Locale−Macros folder—you can use the same DLL for both versions of the example.

Creating the Macro Wrapper DLL

Visual C++ includes a number of macros used to convert one type of input into another type of input. In many
cases, the macro converts two values into a single long value. For example, the macro might convert two
WORD values into a single DWORD value with the first WORD located in the high WORD of the DWORD
and the second WORD loaded in the low WORD of the DWORD. Modern code doesn’t use this technique,
but it was quite common when Windows first arrived on the scene, so we still have to contend with this
method of transferring data today.

Warning You must include Windows.H as part of STDAFX.H to make most Visual C++
wrapper DLLs work correctly. In addition, you must include certain #defines to ensure
that the compiler will enable advanced Windows features. The STDAFX.H entries
provided with the example code show the most common additions. We’ll see later in
the book that this is a baseline configuration. For example, if you want to create an
MMC Snap−in, you also need to include MMC.H in STDAFX.H. The order of the
#includes is important—placing an #include in the wrong place can cause the code to
compile incorrectly or not at all.

Listing 5.5 shows the code you’ll need to use the MAKELANGID() and MAKELCID() macros. Don’t
confuse macros with functions—they’re not interchangeable. You’ll always need to create a Visual C++
wrapper DLL to use a macro, but most functions are easily accessible from within the .NET host language.

Listing 5.5: Macro Wrapper for Locale Conversion

// Create a language ID to use with the DoMAKELCID() function.
static Int16 DoMAKELANGID(Int16 usPrimaryLanguage, Int16 usSubLanguage)
{
 return MAKELANGID(usPrimaryLanguage, usSubLanguage);
}

// Create a LCID to use with functions like EnumCalendarInfoEx().
static Int32 DoMAKELCID(Int16 wLanguageID, Int16 wSortID)
{
 return MAKELCID(wLanguageID, wSortID);
}

// Convenient way to obtain the LOCALE_SYSTEM_DEFAULT value.
static Int32 GetLocaleSystemDefault()
{
 return LOCALE_SYSTEM_DEFAULT;
}

Creating the Macro Wrapper DLL

96

// Convenient way to obtain the LOCALE_USER_DEFAULT value.
static Int32 GetLocaleUserDefault()
{
 return LOCALE_USER_DEFAULT;
}

As you can see, the DoMAKELANGID() and DoMAKELCID() functions simply transfer the incoming data
to the macros and then return the result. Some macros require data conversion and a few can get quite
complex. However, this code represents the vast majority of the macro conversions that you’ll perform. The
only reason you need to use Visual C++ at all is to access the macro.

Note The source code found in this section of the chapter is smaller than what you’ll find on
the CD. The macros and the EnumCalendarInfoEx() function both require enumerations
to ensure the data input is correct. Because there isn’t anything interesting about the
enumerations (other than their presence), the code in the book only contains the actual
methods.

There are many situations where you’ll see default values listed in the Platform SDK documentation that are
actually macro results. In many cases, you can duplicate the default values in your code, but it’s just as easy to
request the default value from Visual C++. Never assign a constant value to a default value derived from a
macro because the macro inputs could change. The GetLocaleSystemDefault() and GetLocaleUserDefault()
obtain the two default values for this example from Visual C++. We’ll see in the "Demonstrating the Calendar
Enumeration" section how to perform this same task using the in code method.

Tip If you’re finding the new Visual C++ .NET Managed Extensions difficult to figure out, Microsoft
provides an instructor−led course (2558) that covers this particular part of the product in detail. You can
learn more at http://www.microsoft.com/TRAINCERT/SYLLABI/2558APRELIM.ASP.

One of the issues you need to work around is the oddity of working with Visual C++ in the managed
environment. This often means changing your coding style or becoming aware of a new code word. In the
case of enumerations, you need to add a __value keyword as shown here.

__value enum SortID
 {
 SI_DEFAULT = 0x0, // sorting default
 // Some skipped values here...
 SI_GEORGIAN_MODERN = 0x1 // Georgian Modern order
 };

Adding the __value keyword will change the presentation of the enumeration within Visual C++. The symbol
will change to show that this is a managed enumeration as shown in Figure 5.3. Notice that the enumeration is
also part of the class and doesn’t simply exist in the namespace. The code will compile if you place the
enumeration in the namespace without a class, but you won’t be able to see it when you import the DLL into
another language (as we will for the example). Another point of interest is that the Object Viewer will display
your comments as long as you’re looking at the Visual C++ view of the enumeration.

Creating the Macro Wrapper DLL

97

Figure 5.3: Using the __value keyword changes the presentation of the enumeration in Visual C++.

Figure 5.4 show the imported view of the same DLL shown in Figure 5.3. The first thing you should notice is
that the enumeration now uses the standard symbol, as if we hadn’t done anything special in Visual C++. This
is an important piece of information to remember, because it demonstrates that the viewing DLLs in the
Object Viewer will tell you about the content of the DLL but not necessarily about the tricks used to produce
that content.

You should also notice the lack of comments in Figure 5.4. Even though you can see the comments in the
Visual C++ presentation, you won’t see them when the DLL is imported into another language.
Unfortunately, there isn’t a fix for this problem unless you want to resort to some truly interesting coding in
the CLR intermediate language (IL). The best way around this problem for now is to ensure that your Visual
C++ function names are clear, conform to any Windows documentation the user might already know, and
follow any documentation you create for the DLL.

Figure 5.4: Even though a Visual C++ enumeration requires special handling, the Object Viewer won’t show
it.

Creating the EnumCalendarInfoEx() Function Code

As in the previous examples, one of the first steps in using a callback function is to create a delegate and a
callback function to handle the input. The delegate and callback functions for this example rely on the
EnumCalendarInfoProcEx() prototype found in the Platform SDK documentation. Listing 5.6 shows both of
these elements.

Listing 5.6: Creating a Delegate and Callback Function for EnumCalendarInfoEx()

// Create the delegate used as an address for the callback
// function.
public delegate bool EnumCalendarInfoProcEx(
 String lpCalendarInfoString,
 CALID Calendar);

Creating the EnumCalendarInfoEx() Function Code

98

// Create the callback function.
public bool CalendarCallback(String lpCalendarInfoString,
 CALID Calendar)
{
 // Create the output string.
 txtCalOutput.Text = txtCalOutput.Text +
 Calendar + "\r\n" +
 lpCalendarInfoString + "\r\n\r\n";

 // Make sure we return all of the values.
 return true;
}

Notice that that callback function receives two inputs. The first is the information string that the caller
requested. The second is a calendar identifier that tells which calendar reference the string is using. By using
an enumerated type as input, rather than an Int32, the code saves a little work. You can place the returned
enumerated value directly in the output string and C# won’t complain. We’ll see later how this works.

Demonstrating the Calendar Enumeration

One of the most important things to remember about the EnumCalendarInfoEx() function is that it’s machine
specific. You can only list information for the languages actually installed on the machine. If you don’t know
which languages the machine has installed, then it’s usually safer to ask for an enumeration of all languages.
Enumerating all of the languages when there’s only one language installed won’t produce a different result
from asking for the specific language—it simply frees you from finding out which language is installed on the
machine.

This example can return quite a few different types of data and it’s interesting to view them all. Consequently,
the example provides a drop−down list box you can use to select information of interest. Clicking Test will
display the data. Listing 5.7 shows the source code for demonstrating the EnumCalendarInfoEx() function.

Listing 5.7: Demonstrating the EnumCalendarInfoEx() Function

// Retrieves the requested calendar values.
[DllImport("Kernel32.DLL")]
public static extern void EnumCalendarInfoEx(
 EnumCalendarInfoProcEx pCalInfoEnumProcEx,
 Int32 Locale,
 CALID Calendar,
 CALTYPE CalType);

private void btnTest_Click(object sender, System.EventArgs e)
{
 // Create the callback pointer.
 EnumCalendarInfoProcEx ECIPE = new EnumCalendarInfoProcEx(CalendarCallback);

 // Create the language ID.
 Int16 LANG_SYSTEM_DEFAULT = MacroWrap.DoMAKELANGID(
 (Int16)MacroWrap.PrimaryLanguage.PL_NEUTRAL,
 (Int16)MacroWrap.SubLanguage.SL_SYS_DEFAULT);

 // Create the LCID.
 Int32 Locale = MacroWrap.DoMAKELCID(
 LANG_SYSTEM_DEFAULT,

Demonstrating the Calendar Enumeration

99

 (Int16)MacroWrap.SortID.SI_DEFAULT);

 // Clear the textbox.
 txtCalOutput.Clear();

 // Call the calendar enumeration.
 EnumCalendarInfoEx(ECIPE,
 Locale,
 CALID.ENUM_ALL_CALENDARS,
 (CALTYPE)cbCalSelect.SelectedIndex+1);
}

The example begins by creating a callback pointer. You can consider this the first step in working with any
callback function. Make sure you always use the delegate to create the pointer or the code won’t work.

The next two calls create the locale identifier (LCID). The first, DoMAKELANGID(), accepts a primary and
secondary language as input. The numbers for these inputs are provided as part of enumerations in the source
code. You’ll want to do the same thing, whenever possible, to ensure the input to the macros is always correct.
(They won’t ever report an error, so debugging this kind of problem is frustrating, to say the least.)

The second call, DoMAKELCID() accepts the language identifier created in the first step, along with a sort
order. Again, this is an enumeration based on the contents of the C/C++ header files provided with Visual
Studio .NET. The return value of this second step is the LCID that you need for the EnumCalendarInfoEx()
call.

The final two steps are to clear the contents of the textbox (txtCalOutput) and call the enumerator
EnumCalendarInfoEx(). One of the essentials here is to ensure any data conversions are correct, which is why
one of the arguments, (CALTYPE)cbCalSelect.SelectedIndex+1, contains a typecast and I’ve increased it by
one. Figure 5.5 shows the output of this example.

Figure 5.5: The example provides information about the language installed on the current machine.

Demonstrating the Calendar Enumeration

100

Where Do You Go from Here?

Callback functions are an essential part of using the Win32 API. You won’t need to use them as often as other
tricks of the trade under .NET, but you’ll need them just the same. This chapter has helped you understand
what a callback function is, how and when to use it, and demonstrated the kinds of applications you can create
using a callback function. However, there are still many issues to discuss for callback functions, so we’ll look
at this topic again as the book progresses.

Now that you have some idea of what a callback function is and where you’ll commonly use it, it’s time to
look at some .NET code. Look for places where you suspect a collection is really standing in for a callback
function found in the Win32 API. You might be surprised at the amount of overlap that you see. Make sure
you check out some of the example sites listed in the chapter as well. It’s always interesting to see how
someone else would tackle the problems of working with callback functions.

It’s also important to consider how you might use callback functions in combination with wrapper DLLs. In
some cases, you’ll want to handle most of a call using unmanaged code to prevent the performance−robbing
cost of switching between the managed and unmanaged environment. Using a callback function could help
you gain a modicum of flexibility over a function that normally returns more than one result, while reducing
the performance overhead of interacting with the DLL.

Chapter 6 begins a new phase of this book. Rather than look at the technologies involved in working with the
Win32 API, we’ll start seeing how you can put the information learned so far to work. One of the common
places to use the Win32 API is at the console screen. The .NET Framework lacks functionality in this area
now because it’s not one of the areas that Microsoft targeted during development. Chapter 6 will show you
some ways to enhance your console applications and provide the user with a better experience—while you
gain the benefits of using .NET for your application development.

Where Do You Go from Here?

101

Part II: Fixing Holes in Standard Applications
Chapter 6: Gaining Support for the Console Application
Chapter 7: Accessing the Hardware Directly
Chapter 8: Overcoming Security Issues

102

Chapter 6: Gaining Support for the Console
Application

Overview

Some people think that console applications are archaic remnants from a past time that are best located in the
bit bucket. However, console applications do have an important role to fulfill in current Windows
development. For example, utility applications often come in a console format to ensure that the administrator
can script them for required maintenance.

Of course, one of the problems with console applications is that the basic console application is devoid of the
bells and whistles that people have come to expect. The simple act of clearing the screen is impossible in
.NET, much less using some of the techniques developers have used in the past to dress up the display. In
many respects, the console applications of today are less capable than the DOS applications of yesterday and
there is no reason that they should be.

This chapter will tell you about the functionality that the .NET Framework does provide to make your console
application work well. In addition, we’ll begin looking at specific holes in the application development
environment and you’ll learn ways to get around those holes. For example, you’ll learn how to perform the
simple task of clearing the screen and we’ll discuss ways to present the graphical characters on screen (among
other things).

What Does the .NET Framework Provide?

The .NET Framework provides you with many essentials for working with the console screen. For example,
there are functions to read and write both individual characters and entire lines of data. You can use any of the
data−oriented functions provided with the .NET Framework—an impressive array compared to previous
environments that you might have used. Any perceptions that you might have at the outset that console
applications are completely unsupported by the .NET Framework are untrue—the .NET Framework has a lot
to offer. Unfortunately, finding the right call can be daunting at times—Microsoft organized the .NET
Framework namespace for use with business applications.

Tip Most developers like to see as many coding examples as possible, so it’s always good to know where you
can fine more. You’ll find two excellent console application examples at Lutz Roeder’s Programming
.NET site at http://www.aisto.com/roeder/dotnet/. The first is a demonstration of advanced math concepts
using .NET (Mapack for .NET). The second is called Managed IL Reader for .NET. Both examples
include lightly commented source. The first namespace you’ll want to know about is System.Console.
This namespace enables you to perform common console tasks such as opening the standard error, input,
and output streams. You can also read and write text to the console (the standard output stream) without
actually opening a stream.

Another good namespace to know about is System.Diagnostics. Yes, you’ll find the debugger classes here, but
you’ll also find a wealth of other interesting classes to work with. For example, the System.Diagnostics
namespace contains the FileVersionInfo class—a real aid when you need to know something about the file
you’re working with. It’s also the namespace that contains many of the performance counter classes such as
CounterCreationData and Performance−Counter. The Process class is exceptionally useful for console
applications that need to manage other processes on a local or remote machine—a task often performed by

103

console applications.

Tip Some people think that the System namespace is actually a container for all of the other
namespaces generally provided by the .NET Framework, so they miss opportunities to use some
of the interesting classes that it contains. The System namespace contains classes that you can
expect to use on a regular basis. It often helps to type "System." (including the period) in the
Visual Studio .NET help index and browse the list of classes—you might be surprised at what
you find.

There are many classes and namespaces that don’t fall directly within the console application domain, but
you’ll still find them useful for building applications. For example, the System namespace contains the
OperatingSystem class, which tells you about operating system statistics such a version number and platform.
There’s also an ObsoleteAttribute class that you can assign to functions that appear in an application or DLL,
but are no longer supported. One class that anyone using the Win32 API should know about is the Buffer
class. This class helps you work with an unmanaged array of bytes.

The BitConverter class is useful for converting those bits you receive from a Win32 API call into something
you can actually use within a .NET application. In fact, this is the class you’d use to create simulations of
some of the Visual C++ macros that you have to contend with when working with the C/C++ header files.
You can use this class to combine to Int16 values into an Int32 value with one value in the high word and the
second value in the low word. This is one of the more common macro conversions used in Visual C++ to
comply with Win32 API call requirements. The GetBytes() function is especially useful when you need to
break one of these combined values apart. In some cases, you need to break them apart in order to know what
the Win32 API sent as a return value.

The System.Configuration namespace is the last one we’ll look at in this section. This namespace contains
classes that enable you to manage the .CONFIG files for the .NET Framework. For example, if you want to
read specific values from the configuration files, you’ll need the AppSettingsReader class. You’ll read
individual configuration settings using the ConfigurationSettings class. This class can also return an
AppSettings object that enables you to view particular elements within the XML structure of the .CONFIG
file.

As you can see, the .NET Framework does have a lot to offer you as a developer. As to why Microsoft chose
to leave out such seemingly simple, yet essential, features as clearing the console screen—there doesn’t seem
to be an answer. Fortunately, you can still access all of these missing elements using the code found in the rest
of the chapter.

Clearing the Screen Example

As previously mentioned, the .NET Framework doesn’t provide the means to perform the simple act of
clearing the console screen. The only way to clear the screen is to rely on Win32 API calls. Unfortunately, this
isn’t one of those situations where a single call to the Win32 API will do the job. You’ll actually need to make
several calls, as shown in Listing 6.1. (The source code appears in the \Chapter 06\C#\ClearScreen and
\Chapter 06\VB\ClearScreen folders on the CD.)

Listing 6.1: An Example of How to Clear the Console Screen

// This special class contains an enumeration of
// standard handles.

Clearing the Screen Example

104

class StdHandleEnum
{
 public const int STD_INPUT_HANDLE = −10;
 public const int STD_OUTPUT_HANDLE = −11;
 public const int STD_ERROR_HANDLE = −12;
};

// This structure contains a screen coordinate.
[StructLayout(LayoutKind.Sequential, Pack=1)]
 internal struct COORD
{
 public short X;
 public short Y;
}

// This stucture contains information about the
// console screen buffer.
[StructLayout(LayoutKind.Sequential, Pack=1)]
 internal struct CONSOLE_SCREEN_BUFFER_INFO
{
 public COORD Size;
 public COORD p1;
 public short a1;
 public short w1;
 public short w2;
 public short w3;
 public short w4;
 public COORD m1;
}

// We need these four functions from kernel32.dll.
// The GetStdHandle() function returns a handle to any
// standard input or output.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern IntPtr GetStdHandle(int nStdHandle);

// The GetConsoleScreenBufferInfo() returns information
// about the console screen buffer so we know how much to
// clear.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool GetConsoleScreenBufferInfo(
 IntPtr hConsoleOutput,
 out CONSOLE_SCREEN_BUFFER_INFO lpConsoleScreenBufferInfo);

// The SetConsoleCursorPosition() places the cursor on the
// console screen.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool SetConsoleCursorPosition(
 IntPtr hConsoleOutput,
 COORD dwCursorPosition);

// The FillConsoleOutputCharacter() allows us to place any character
// on the console screen. Using a space clears the display area.
[DllImport("kernel32.dll", SetLastError=true, CharSet=CharSet.Auto)]
public static extern bool FillConsoleOutputCharacter(
 IntPtr hConsoleOutput,
 short cCharacter,
 int nLength, COORD WriteCoord,
 out int lpNumberOfCharsWritten);

[STAThread]

Clearing the Screen Example

105

static void Main(string[] args)
{
 // Needed ask Windows about the console screen
 // buffer settings.
 CONSOLE_SCREEN_BUFFER_INFO CSBI;
 // Handle to the otuput device.
 IntPtr hOut;
 // Number of characters written to the screen.
 int CharOut;
 // Home cursor position.
 COORD Home;

 // Write some data to the screen.
 Console.Write("Some Text to Erase!" +
 "\r\nPress any key...");
 Console.ReadLine();

 // Clear the screen.
 // Begin by getting a handle to the console screen.
 hOut = GetStdHandle(StdHandleEnum.STD_OUTPUT_HANDLE);

 // Get the required console screen buffer information.
 GetConsoleScreenBufferInfo(hOut, out CSBI);

 // Set the home position for the cursor (upper left corner).
 Home.X = 0;
 Home.Y = 0;

 // Fill the console with spaces.
 FillConsoleOutputCharacter(hOut,
 (short) ‘ ‘,
 CSBI.Size.X * CSBI.Size.Y,
 Home,
 out CharOut);

 // Place the cursor in the upper left corner.
 SetConsoleCursorPosition(hOut, Home);

 // Show the screen is clear.
 Console.ReadLine();
}

This looks like a lot of code to clear the console screen, but the process is relatively simple. The code requires
an enumeration for standard output handles. An output handle is simply a pointer to a device such as the
screen. The three standard devices are input, output, and error. We also need two structures to fulfill the needs
of the Windows API calls used in the example. The code listing describes each structure’s task.

The example code relies on four Windows API functions, GetStdHandle(), GetConsoleScreenBufferInfo(),
FillConsoleOutputCharacter(), and SetConsoleCursorPosition(). All of these functions appear in the
KERNEL32.DLL. All four perform some type of console screen manipulation. The code listing describes
each function’s task.

The short part of the code is actually demonstrating the console screen−clearing process. Main() creates some
output on screen. The ReadLine() call merely ensures that the code will wait until you see the text. Press Enter
and the clearing process begins. The following steps tell how the code clears the screen.

Clearing the Screen Example

106

The first thing we need is a handle to the console output using the GetStdHandle() function. The
handle tells Windows what device we want to work with.

1.

The next step is to ask Windows about the dimensions of the console window using the
GetConsoleScreenBufferInfo() function. The dimensions are important because you want to ensure
the console screen erases completely.

2.

At this point, you need to fill the screen with spaces using the FillConsoleOutput−Character()
function. Filling the screen with spaces is the equivalent of erasing its content.

3.

Finally, we place the cursor in the upper−left corner using the SetConsoleCursorPosition()
function—the same place the CLS (clear screen) command would.

4.

The ability to clear the screen might not matter when you work with a console application using a script, but it
does matter when you want to use the console application in interactive mode. All too often, a console
application will continue to scroll data on screen until it becomes so filled with useless characters that it’s hard
to see the data for the clutter. If you’re building a library of essential screen routines in a DLL, this should be
one of your first additions.

Getting Console Information Examples

Sometimes you need to know information about the console or the underlying operating system. For example,
you might need to know about code pages that the console supports when working in a multiple language
environment or the number of processes in use when creating a complex console application. All of these
items fall within the console information category. Every time you need data in order to make the console
application work, you have to obtain it either from the .NET Framework (as in the operating system version)
or from the Win32 API. Generally, you’ll find that the Win32 API has a lot more to offer than the .NET
Framework in this case.

The following sections show how to make some simple calls using the Win32 API to obtain console
information. You saw part of that environmental information in the previous example when we used the
GetConsoleScreenBufferInfo() function to obtain the current screen size. However, the Win32 API has a lot
more to offer than screen size information. For example, the first application shows how to work with code
pages (the character codes mapped to individual characters) when working with the console.

Tip You can use the FillConsoleOutputCharacter() function to display repetitive characters on screen.
However, there are several ways to perform this same task using the .NET Framework methods, so you
should determine which method is more appropriate. In most cases, you’ll want to use the .NET
Framework calls whenever possible.

Working with Code Pages

As previously mentioned, code pages are the character codes mapped to individual characters in the standard
256−character set. Code pages enable a developer to represent information in a variety of languages. The four
code page–specific functions include GetConsoleCP(), SetConsoleCP(), GetConsoleOutputCP(), and
SetConsoleOutputCP(). Listing 6.2 shows how to use these four functions. (The example code appears in the
\Chapter 06\C#\CodePage and \Chapter 06\VB\CodePage folders on the CD.)

Listing 6.2: Using the Code Page Functions in a Console Application

// The function used to check the current code page.
[DllImport("Kernel32.DLL")]
public static extern UInt32 GetConsoleCP();

Getting Console Information Examples

107

// The function used to check the output code page.
[DllImport("Kernel32.DLL")]
public static extern UInt32 GetConsoleOutputCP();

// The function used to set the current code page.
[DllImport("Kernel32.DLL")]
public static extern bool SetConsoleCP(UInt32 wCodePageID);

// The function used to set the output code page.
[DllImport("Kernel32.DLL")]
public static extern bool SetConsoleOutputCP(UInt32 wCodePageID);

[STAThread]
static void Main(string[] args)
{
 UInt32 CurrentCP; // The current code page.
 UInt32 OutputCP; // The output code page.
 UInt32 NewCP; // The new current code page.
 UInt32 NewOutCP; // The new output code page.
 char Special = ‘\xA5’;

 // Obtain the current and output code pages.
 CurrentCP = GetConsoleCP();
 OutputCP = GetConsoleOutputCP();

 // Display the two values on a console screen.
 Console.WriteLine("Checking the current code page.\r\n");
 Console.WriteLine("The current code page is: " +
 CurrentCP.ToString());
 Console.WriteLine("The ouptut code page is: " +
 OutputCP.ToString());

 // Set the console to the Russian code page.
 if (!SetConsoleCP(866))
 Console.WriteLine("Couldn’t change the current code page.");
 if (!SetConsoleOutputCP(866))
 Console.WriteLine("Couldn’t change the output code page.");

 // Display some text.
 NewCP = GetConsoleCP();
 NewOutCP = GetConsoleOutputCP();
 Console.WriteLine("\r\nUsing new current code page " +
 NewCP.ToString());
 Console.WriteLine("Using new output code page " +
 NewOutCP.ToString());

 // Return the code page to the original value.
 SetConsoleCP(CurrentCP);
 SetConsoleOutputCP(OutputCP);
 Console.WriteLine("\r\nUsing the original code pages.");

 // Wait until the user is done viewing the information.
 Console.Write("\r\nPress any key when ready...");
 Console.Read();
}

As you can see, the code for working with the code page information is extremely simple. The two functions

Getting Console Information Examples

108

for obtaining a code page require no input and provide a UInt32 value as output. The two functions used to
change the code page require a UInt32 value as input and return a bool that tells whether the call is successful.
Figure 6.1 shows the output from this example.

Figure 6.1: Changing code pages is relatively easy using Win32 API calls.

Of course, before the call will actually change the appearance of the screen, you need to load the appropriate
code pages, which means modifying the Config.NT file located in the \WINDOWS\system32 of the hard
drive. Another item to note is that the default code page for many Windows installations is 1252 (Windows
ANSI). The code page functions may still return a value of 437, even if Windows is using code page 1252
because Microsoft wanted to ensure maximum compatibility with older applications. The bottom line is that
you must load the code pages you want to use separately from the support provided by Windows.

Gaining Access to Console Mode Information

There are a number of environmental considerations when working with the console. The most important
considerations are the mode in which the console is operating at any given time. For example, you might want
to display data differently when the console is in full screen mode, than when it operates as a window. The
two console mode–specific functions are GetConsoleDisplayMode() and GetConsoleMode(). You might need
GetLargestConsole−WindowSize() function on occasion, to learn how big you can make the console window.
If you want to change the current console mode, use the SetConsoleMode() function. Listing 6.3 shows
several of these functions in action. You’ll find the source code for the example in the \Chapter
06\C#\ConsoleMode and \Chapter 06\VB\ConsoleMode folders on the CD.

Note Listing 6.3 omits some of the code we’ve already discussed as part of Listing 6.1. Please refer
to the ClearScreen example for explanations of the GetStdHandle() function and associated
enumerations. The ClearScreen example also shows how to use the COORD structure.

Listing 6.3: Methods Used to Access Console Mode Information

// Obtains the current display mode—fullscreen or fullscreen hardware.
[DllImport("Kernel32.DLL")]
public static extern bool GetConsoleDisplayMode(ref UInt32 lpModeFlags);

// An enumeration used to determine the current display mode.
public enum ConsoleDispMode
{
 CONSOLE_WINDOWED = 0, // Only implied by function.
 CONSOLE_FULLSCREEN = 1, // The console is fullscreen.
 CONSOLE_FULLSCREEN_HARDWARE = 2 // The console owns the hardware.
}

// Obtains the size of the largest console window possible.

Gaining Access to Console Mode Information

109

[DllImport("Kernel32.DLL")]
public static extern COORD
 GetLargestConsoleWindowSize(IntPtr hConsoleOutput);

// Returns the console mode information.
[DllImport("Kernel32.DLL")]
public static extern bool GetConsoleMode(IntPtr hConsoleHandle,
 ref UInt32 lpMode);

public enum ModeFlags
{
 // Input mode flags
 ENABLE_PROCESSED_INPUT = 0x0001,
 ENABLE_LINE_INPUT = 0x0002,
 ENABLE_ECHO_INPUT = 0x0004,
 ENABLE_WINDOW_INPUT = 0x0008,
 ENABLE_MOUSE_INPUT = 0x0010,

 // Output mode flags
 ENABLE_PROCESSED_OUTPUT = 0x0001,
 ENABLE_WRAP_AT_EOL_OUTPUT = 0x0002
}

[STAThread]
static void Main(string[] args)
{
 UInt32 DisplayMode = 0; // The current display mode.
 IntPtr hOut; // Handle to the output device.
 IntPtr hIn; // Handle to the input device.
 COORD ScreenSize; // Maximum screen size.
 UInt32 ConsoleMode = 0; // The console mode information.

 // Get the current display mode.
 if (GetConsoleDisplayMode(ref DisplayMode))

 // Determine if the console is in windowed mode.
 if (DisplayMode == (UInt32)ConsoleDispMode.CONSOLE_WINDOWED)
 Console.WriteLine("Console is in windowed mode.");
 else
 {

 // If the console is fullscreen mode, determine which
 // of the potential conditions are true.
 switch (DisplayMode)
 {
 case (UInt32)ConsoleDispMode.CONSOLE_FULLSCREEN:
 Console.WriteLine("Console is in fullscreen mode.");
 break;
 case (UInt32)ConsoleDispMode.CONSOLE_FULLSCREEN_HARDWARE:
 Console.WriteLine("Console has hardware access.");
 break;
 case (UInt32)ConsoleDispMode.CONSOLE_FULLSCREEN +
 (UInt32)ConsoleDispMode.CONSOLE_FULLSCREEN_HARDWARE:
 Console.WriteLine("Console is in fullscreen mode and " +
 "has access to the hardware.");
 break;
 }
 }
 else

 // If the call failed, register an error.

Gaining Access to Console Mode Information

110

 Console.WriteLine("No Display Mode Information Available");

 // Obtain a handle to the console screen and console input.
 hIn = GetStdHandle(StdHandleEnum.STD_INPUT_HANDLE);
 hOut = GetStdHandle(StdHandleEnum.STD_OUTPUT_HANDLE);

 // Determine the largest screen size possible.
 ScreenSize = GetLargestConsoleWindowSize(hOut);

 // Display the information.
 Console.WriteLine("\r\nThe largest console window size is:" +
 "\r\n Columns: " + ScreenSize.X.ToString() +
 "\r\n Rows: " + ScreenSize.Y.ToString());

 // Get the console mode information.
 Console.WriteLine("\r\nConsole Mode Information:");

 // Retrieve the input information.
 if (GetConsoleMode(hIn, ref ConsoleMode))
 {
 if ((ConsoleMode & (UInt32)ModeFlags.ENABLE_ECHO_INPUT) ==
 (UInt32)ModeFlags.ENABLE_ECHO_INPUT)
 Console.WriteLine(" Echo Input Enabled");

 if ((ConsoleMode & (UInt32)ModeFlags.ENABLE_LINE_INPUT) ==
 (UInt32)ModeFlags.ENABLE_LINE_INPUT)
 Console.WriteLine(" Line Input Enabled");

 if ((ConsoleMode & (UInt32)ModeFlags.ENABLE_MOUSE_INPUT) ==
 (UInt32)ModeFlags.ENABLE_MOUSE_INPUT)
 Console.WriteLine(" Mouse Input Enabled");

 if ((ConsoleMode & (UInt32)ModeFlags.ENABLE_PROCESSED_INPUT) ==
 (UInt32)ModeFlags.ENABLE_PROCESSED_INPUT)
 Console.WriteLine(" Processed Input Enabled");

 if ((ConsoleMode & (UInt32)ModeFlags.ENABLE_WINDOW_INPUT) ==
 (UInt32)ModeFlags.ENABLE_WINDOW_INPUT)
 Console.WriteLine(" Window Input Enabled");
 }

 // Retrieve the output information.
 if (GetConsoleMode(hOut, ref ConsoleMode))
 {
 if ((ConsoleMode & (UInt32)ModeFlags.ENABLE_PROCESSED_OUTPUT) ==
 (UInt32)ModeFlags.ENABLE_PROCESSED_OUTPUT)
 Console.WriteLine(" Processed Output Enabled");

 if ((ConsoleMode & (UInt32)ModeFlags.ENABLE_WRAP_AT_EOL_OUTPUT)
 == (UInt32)ModeFlags.ENABLE_WRAP_AT_EOL_OUTPUT)
 Console.WriteLine(" Wrap at End of Line Enabled");
 }

 // Wait until the user is done viewing the information.
 Console.Write("\r\nPress any key when ready...");
 Console.Read();
}

Gaining Access to Console Mode Information

111

This example shows some of the anomalies you’ll need to consider when working with the Win32 API.
Several of the previous examples have shows API functions that return an HRESULT—essentially an error
code. The GetConsoleDisplayMode() and GetConsoleMode() in this example return a bool, which is a simple
pass/fail indicator for the function call. On the other hand, the GetLargestConsoleWindowSize() function
returns a COORD structure, which means you have neither an error result nor a pass/fail indicator until you
attempt to use the data contained within the structure.

The code begins with a call to the GetConsoleDisplayMode() function. If you read the Platform SDK
documentation for this function, you’ll notice that it only refers to two return values:
CONSOLE_FULLSCREEN_HARDWARE and CONSOLE_FULLSCREEN. The problem is that there’s an
actual third value of CONSOLE_WINDOWED. The code reflects this fact and you’ll find that the need for
the undocumented value is practical as well. The one important issue to consider is that a windowed console
application will never use the CONSOLE_FULLSCREEN_HARDWARE value, so the code reflects this fact
too. The GetConsoleDisplayMode() function requires that you pass a UInt32 variable by reference, not as an
out variable. In other words, you must initialize the variable before you pass it or you might receive
unpredictable results.

The GetLargestConsoleWindowSize() function call comes next. Notice that you must supply a standard
output handle for this function. We’ll find with the GetConsoleMode() function that this isn’t necessarily true
for all Win32 API calls. The GetLargestConsoleWindowSize() function returns a COORD structure
containing the largest window you can create for the console referenced by the handle you provide. The
screen buffer might not provide the required amount of memory for a full−sized screen, so you need to keep
what’s possible separate from what the console can support. You can use the SetConsoleScreenBufferSize()
function to resize the window to maximum using the results from this call.

Using the GetLargestConsoleWindowSize() function in full−screen mode will yield different results from
windowed mode. The reason is that the full−screen mode is controlled by a different set of settings from the
windowed mode. To change the full−screen mode settings, you can right−click the title bar of the console
window and choose Properties from the context menu. The Options tab contains settings to switch from
windowed for full−screen operation. The Layout tab shown in Figure 6.2 enables you to change the screen
buffer settings, which also determines the output from the GetLargestConsoleWindowSize() function.
However, if the user uses the MODE command to change the size of the window, it doesn’t affect the output
from the GetLargestConsoleWindowSize() function because the output is based upon the screen buffer size,
not the window size.

Gaining Access to Console Mode Information

112

Figure 6.2: Use the settings on the Layout tab to change the output from the GetLargestConsoleWindowSize()
function.

The GetConsoleMode() function is next on the list. It’s important to note that you can provide either a screen
buffer (standard output) or an input handle for this function. However, the results you obtain will directly
reflect the kind of handle you pass to the function. Consequently, the example code shows what happens for
both an input and an output handle. The handle tells you the mode settings for both input and output as
determined by the handle provided. All of the mode settings except window input are enabled by default. The
Platform SDK documentation explains the various settings in detail.

Now that you have some idea of what the console mode functions do, let’s look at the example in action.
Figure 6.3 shows the windowed output from the example. The full−screen output is different, so you’ll want
to test both modes. As you can see, the example correctly detects the windowed state of the console window,
the largest size the console window will allow, and which mode settings the console window has enabled.

Figure 6.3: The example application demonstrates the usefulness of the console mode information.

Working with Processes

Each console window normally contains one, and only one, process. However, you might create an
application that spawns other processes to perform tasks in the background. In this case, you’ll want to know
about the other processes running in the console window so that you don’t close it while another process is
still running. The GetConsoleProcessList() function can help you perform this task.

You might think that this function is custom designed for a callback function (see Chapter 5 for details).
However, you’ll find that the GetConsoleProcessList() function relies on an array to store the retrieved data.
This means you have to call the function twice. The first call retrieves the number of elements the array will
require, while the second call actually retrieves the data. Listing 6.4 shows an example of how to use this
function. You’ll find the source code in the \Chapter 06\C#\GetProcess and \Chapter 06\VB\GetProcess
folders on the CD.

Listing 6.4: One Method for Obtaining a List of Current Processes

// This function obtains the current list of processes.
[DllImport("Kernel32.DLL")]
public static extern Int32 GetConsoleProcessList(
 ref UInt32 []lpdwProcessList,
 Int32 dwProcessCount);

[STAThread]
static void Main(string[] args)
{
 Int32 NumProcesses; // The number of processes.

Working with Processes

113

 UInt32 []ProcessIDs; // The array of process IDs.

 // Determine how big to make the array.
 ProcessIDs = new UInt32[1]{0};
 NumProcesses = GetConsoleProcessList(ref ProcessIDs, 0);

 // Determine if there are any other processes.
 if (NumProcesses == 0)
 Console.WriteLine("No other processes to list.");
 else
 {
 // Create an array capable of holding the data.
 ProcessIDs = new UInt32[NumProcesses];

 // Initialize the array.
 for (int Counter = 0; Counter < NumProcesses; Counter++)
 ProcessIDs[Counter] = 0;

 // Call the function again with the appropriate arguments.
 GetConsoleProcessList(ref ProcessIDs, NumProcesses);

 // Display the output.
 for (int Counter = 0; Counter < NumProcesses; Counter++)
 Console.WriteLine("Process ID {0} is {1}",
 Counter,
 ProcessIDs[Counter]);
 }

 // Wait until the user is done viewing the information.
 Console.Write("\r\nPress any key when ready...");
 Console.Read();
}

As you can see, using the GetConsoleProcessList() function is a bit convoluted. You need to determine the
number of array elements first; then create the array; and, finally, make the real call to the function. There are
a number of other Win32 API calls that work in a similar fashion, so it’s important to realize when a call is
actually requesting this type of information exchange.

Note Theoretically, you won’t need to access process information for a console application very often, so the
convoluted process shown here is an exception to the rule. Only complex console applications spawn
other processes. Using processes is a good feature to know about.

The GetConsoleProcessList() function is only a partial solution to the problem of determining which
processes are running on the machine. What you receive is a process identifier (PID)—a number that uniquely
identifies the process in question. To determine anything else about the process, you need to use the PID with
other .NET functions to retrieve other process information—including the name of the application running
within the process. However, the PID is your key to additional information, so having it as a starting point
make sense.

Changing the Environment Examples

In the previous section of the chapter, we discussed how to obtain and manipulate information provided to the
console application. Knowing how the console is configured and what the user expects from the console

Changing the Environment Examples

114

application enable the developer to create flexible, yet powerful applications. However, the console
application is also a product of its environment. For example, a console application begins with a default font
that may or may not meet the needs of the application.

The following sections discuss the console environment. The purpose of these sections is to help you add
emphasis to your applications by changing the environment in which they operate. With this in mind, I also
decided to provide a very short section on environmental strings. This section is one of the few non–Win32
API discussions in the book and you can skip it if desired. The reason this section is included is that some
developers might not know how to access the environmental strings and this knowledge is essential for some
Win32 API calls.

All of the other sections will help you create a friendlier environment for the end user and gain more control
over the output of your application. Console applications don’t have to look kludged together or provide a
bulking or unusable interface. The following sections show you how to overcome some of the perceptions that
developers have concerning the console application and its environment.

Accessing the Environmental Strings

Console applications have access to two sets of input in the form of environmental strings—information that
controls how the application reacts, locates files, executables, or data, or determines current system status. The
first is the command−line arguments passed to the application. These strings are application specific and
you’ll normally want to provide a means for handling them. The second is the environmental strings provided
as part of AutoExec.NT or the Environmental Variables dialog box shown in Figure 6.4 for Windows XP.
(Windows NT and Windows 2000 also provide the Environmental Variables dialog box, but it looks slightly
different than the one shown in the figure.) All of these sources of input for the console application are
completely accessible using standard .NET Framework functions. As previously mentioned, the main reason
for discussing the environmental strings is so you know how to access them from your application—many
Win32 API functions require information provided by these environmental strings.

Figure 6.4: The Environmental Variables dialog box contains a set of system and user strings.

The command−line arguments are passed to the Main() function of a console application using the args
variable. You’ll need to use the Environment class to retrieve the environmental strings, among other items of
information. Listing 6.5 shows how to work with both the command−line arguments and the environmental
strings. You’ll find the source code for this example in the \Chapter 06\C#\Environment and \Chapter
06\VB\Environment folders on the CD.

Accessing the Environmental Strings

115

Listing 6.5: Methods of Accessing the Command−line Arguments and Environmental Strings

[STAThread]
static void Main(string[] args)
{
 // Display each of the command line arguments in turn.
 Console.WriteLine("The Command Line Arguments:\r\n");
 for (int Counter = 0; Counter < args.Length; Counter++)
 Console.WriteLine(args[Counter]);

 // Obtain the environmental strings.
 Console.WriteLine("\r\nThe Environmental Strings:");
 foreach (DictionaryEntry DE in
 System.Environment.GetEnvironmentVariables())
 {
 // Display the key/value pairs.
 Console.WriteLine(DE.Key.ToString());
 Console.WriteLine(DE.Value.ToString() + "\r\n");
 }

 // Obtain a single environmental string.
 Console.WriteLine("\r\nSingle Environmental String (Path):");
 Console.WriteLine(System.Environment.GetEnvironmentVariable("Path"));

 // Wait until the user is done viewing the information.
 Console.Write("\r\nPress any key when ready...");
 Console.Read();
}

As you can see, the command−line arguments appear as an array. Simply parsing the array will help you
locate the information you need. The example application provides an automatic command line when you start
the application in the debugger. You can change this setting in the Configuration Properties\Debugging folder
of the Environment Property Pages dialog box. The Command Line Arguments property contains the value
you’ll need to change.

Tip You can also retrieve the command−line arguments for an application using the GetCommandLineArgs()
function found in the Environment class. This function enables you to send command−line arguments to a
specific function within an application—the application doesn’t have to pass the argument around until it
reaches the right place.

There are several functions for retrieving the environmental strings—the code shows the two most commonly
used techniques. The GetEnvironmentVariables() function returns an IDictionary, which is made up of
DictionaryEntry object key/value pairs. The foreach loop provides the perfect method for examining each of
these entries in turn. You can also use the GetEnvironmentVariable() function to retrieve a single
environmental string. Of course, this implies that you know the name of the environmental string that you
want to retrieve. Generally, the GetEnvironmentVariable() function is easier to use because you get one
response and don’t need to parse through all of the other potential entries. Figure 6.5 shows the output from
this example.

Accessing the Environmental Strings

116

Figure 6.5: Retrieving command−line arguments and environment strings is relatively easy with .NET.

Tip Some environmental variables strings contain environment variables that can prove difficult to work with.
For example, the Path environmental string could contain a reference to %WinBase%, which doesn’t
make much sense. You can use the ExpandEnvironmentVariables() function in this situation to expand
the variable to something you can use within an application.

You should be wondering, at this point, how you can add new environmental strings or change existing
environmental strings. Unfortunately, the .NET Framework falls short of providing this functionality, so you
have to rely on a Win32 API call to do it. (You knew I was going to get a Win32 API call in here—didn’t
you?) To perform this task, you’ll need the help of the SetEnvironmentVariable() function as shown in Listing
6.6. You’ll find the source code for this example in the \Chapter 06\C#\SetEnvironment and \Chapter
06\VB\SetEnvironment folders on the CD.

Listing 6.6: Setting and Changing an Environmental String

// The function required to set or change environmental strings.
[DllImport("Kernel32.DLL")]
public static extern bool SetEnvironmentVariable(String lpName,
 String lpValue);

[STAThread]
static void Main(string[] args)
{
 // Set the new environmental string.
 SetEnvironmentVariable("MyEnvironment", "This is a value.");

 // Obtain the new environmental string.
 Console.WriteLine("\r\nMyEnvironment Environmental String:");
 Console.WriteLine(
 System.Environment.GetEnvironmentVariable("MyEnvironment"));

 // Change the new environmental string.
 SetEnvironmentVariable("MyEnvironment", "A new display value.");

 // Obtain the updated environmental string.
 Console.WriteLine("\r\nUpdated MyEnvironment Environmental String:");
 Console.WriteLine(
 System.Environment.GetEnvironmentVariable("MyEnvironment"));

 // Wait until the user is done viewing the information.
 Console.Write("\r\nPress any key when ready...");
 Console.Read();
}

Accessing the Environmental Strings

117

The code for the SetEnvironmentVariable() function is surprisingly simple, which is why it’s a wonder that
Microsoft didn’t add it to the .NET Framework. As you can see, the function requires a key/value pair input.
The first string contains the key, while the second string contains the value. Figure 6.6 shows the output from
this example.

Figure 6.6: Setting environmental strings is easy— just supply a key and a value.

Using Cursors and Fonts

Many people think that they’re stuck with the cursor and font originally presented in the console
window—others simply don’t think too much about the option of changing either item. However, it pays to
know about both cursor and font manipulation for those times when you want to emphasize something on
screen. The GetConsoleCursorInfo() and SetConsoleCursorInfo() functions help you with the console cursor.

The GetConsoleFontSize() function enables you to work with the font. You can specify the index of the
current font or ask for the dimensions of any font supported by the console window. This function can help
you perform tasks like size the console window for a specific font. When you only want to know about the
current font, you can use the GetCurrentConsoleFont() function. You also need to use the
GetCurrentConsoleFont() function to obtain a font index number for the GetConsoleFontSize() function. The
GetCurrentConsoleFont() function can retrieve the current console font or the font for the maximum window
supported by the current window settings and the machine. If you feel that the console needs a bit of color,
you can use the FillConsoleOutputAttribute() or the SetConsoleTextAttribute() functions.

You’ll use the cursor−related functions relatively often because the console offers little in the way of console
control otherwise. The example in Listing 6.1 shows you how to move the cursor around. The example in this
section will show you how to obtain and change the cursor characteristics. Console applications can use these
functions to modify the appearance of the cursor for emphasis, such as when the application goes from insert
to overwrite mode.

Note Unlike a GUI window, you can’t change the size of the font within a console window directly because
the console window has specific limits placed on it. For example, the console window uses a
monospaced font. You can learn more about the criteria for console fonts at
http://support.microsoft.com/default.aspx?scid=kb;en−us;Q247815. The window size and the number of
rows and columns of text determine the size of the console font. If you want to change the size of the
font, then you need to change one of the associated font factors. For example, retaining the current
number of rows and columns, while increasing the size of the window, will also increase the size of the
font.

Modifying font characteristics also presents an opportunity for emphasizing information. For example, you
can present the text using a different color—red for danger or green for success. If the font is large enough,
you can also add features such as underline (the underline still works with small fonts, but you can’t really see

Using Cursors and Fonts

118

it). Listing 6.7 demonstrates the various font and cursor functions discussed in this section. You can find the
example code in the \Chapter 06\C#\CursorAndFont and \Chapter 06\VB\CursorAndFont folders on the CD.
(The source listing in Listing 6.7 is incomplete—check the source code on the CD for functions and structures
discussed in previous sections of the chapter.)

Listing 6.7: Examples of How to Use the Cursor and Font Functions

// Obtains the current cursor settings.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool GetConsoleCursorInfo(
 IntPtr hConsoleOutput,
 ref CONSOLE_CURSOR_INFO lpConsoleCursorInfo);

// Modifies the cursor settings.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool SetConsoleCursorInfo(
 IntPtr hConsoleOutput,
 ref CONSOLE_CURSOR_INFO lpConsoleCursorInfo);

// The data structure used to get or set the cursor information.
public struct CONSOLE_CURSOR_INFO
{
 public UInt32 dwSize; // Percentage of character cell.
 public bool bVisible; // Is it visible?
}

// Function for obtaining the current console font. The font
// can represent either the current window size or the maximum
// window size for the machine.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool GetCurrentConsoleFont(
 IntPtr hConsoleOutput,
 bool bMaximumWindow,
 ref CONSOLE_FONT_INFO lpConsoleCurrentFont);

// This structure contains the console font information.
public struct CONSOLE_FONT_INFO
{
 public UInt32 nFont; // The font number.
 public COORD dwFontSize; // The font size.
}

// This function obtains the font size specified by the font
// index (not necessarily the current font).
[DllImport("kernel32.dll", SetLastError=true)]
public static extern COORD GetConsoleFontSize(
 IntPtr hConsoleOutput,
 UInt32 nFont);

// This function changes the text attributes.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool SetConsoleTextAttribute(
 IntPtr hConsoleOutput,
 CharacterAttributes wAttributes);

// This enumeration lists all of the character attributes. You
// can combine attributes to achieve specific effects.
public enum CharacterAttributes
{
 FOREGROUND_BLUE = 0x0001,

Using Cursors and Fonts

119

 FOREGROUND_GREEN = 0x0002,
 FOREGROUND_RED = 0x0004,
 FOREGROUND_INTENSITY = 0x0008,
 BACKGROUND_BLUE = 0x0010,
 BACKGROUND_GREEN = 0x0020,
 BACKGROUND_RED = 0x0040,
 BACKGROUND_INTENSITY = 0x0080,
 COMMON_LVB_LEADING_BYTE = 0x0100,
 COMMON_LVB_TRAILING_BYTE = 0x0200,
 COMMON_LVB_GRID_HORIZONTAL = 0x0400,
 COMMON_LVB_GRID_LVERTICAL = 0x0800,
 COMMON_LVB_GRID_RVERTICAL = 0x1000,
 COMMON_LVB_REVERSE_VIDEO = 0x4000,
 COMMON_LVB_UNDERSCORE = 0x8000
}

[STAThread]
static void Main(string[] args)
{
 IntPtr hOut; // Handle to the output device.
 CONSOLE_CURSOR_INFO CCI; // The current cursor information.
 CONSOLE_CURSOR_INFO NewCCI; // The new cursor information.
 CONSOLE_FONT_INFO CFI; // The console font information.
 COORD FontSize; // The size of the requested font.

 // Obtain a handle to the console screen.
 hOut = GetStdHandle(StdHandleEnum.STD_OUTPUT_HANDLE);

 // Get the cursor information.
 CCI.bVisible = false;
 CCI.dwSize = 0;
 GetConsoleCursorInfo(hOut, ref CCI);

 // Display the results.
 if (CCI.bVisible)
 Console.WriteLine("The cursor is displayed at {0}% of the" +
 " cell height.", CCI.dwSize);
 else
 Console.WriteLine("The cursor is invisible.");

 // Modify the cursor appearance.
 NewCCI.bVisible = true;
 NewCCI.dwSize = 100;
 if (SetConsoleCursorInfo(hOut, ref NewCCI))
 {
 Console.WriteLine("\r\nThe new cursor settings are in effect.");
 Console.Write("Press any key when ready...");
 Console.ReadLine();

 // Reset the cursor to its original size.
 Console.WriteLine("Returning the cursor to normal.");
 SetConsoleCursorInfo(hOut, ref CCI);
 }
 else
 // The call failed, normally due to an out of range value.
 Console.WriteLine("The cursor settings couldn’t be changed.");

 // Obtain the current font information.
 CFI.nFont = 0;
 CFI.dwFontSize.X = 0;
 CFI.dwFontSize.Y = 0;

Using Cursors and Fonts

120

 FontSize.X = 0;
 FontSize.Y = 0;
 GetCurrentConsoleFont(hOut, false, ref CFI);
 FontSize = GetConsoleFontSize(hOut, CFI.nFont);
 Console.WriteLine("\r\nThe Current Font Information:");
 Console.WriteLine(" Font Number: {0}\r\n FontSize: {1} X {2}",
 CFI.nFont,
 FontSize.X,
 FontSize.Y);

 // Display the list of available font sizes.
 Console.WriteLine("\r\nThe List of Fonts Includes:");
 GetCurrentConsoleFont(hOut, true, ref CFI);
 for (UInt32 Counter = 0; Counter <= CFI.nFont; Counter++)
 {
 FontSize = GetConsoleFontSize(hOut, Counter);
 Console.WriteLine(" {0} X {1}", FontSize.X, FontSize.Y);
 }

 // Display the text using various colors and attributes.
 Console.WriteLine("\r\nTesting Character Attributes:");
 SetConsoleTextAttribute(hOut, CharacterAttributes.FOREGROUND_BLUE |
 CharacterAttributes.FOREGROUND_GREEN |
 CharacterAttributes.FOREGROUND_INTENSITY);
 Console.WriteLine("This text is in turquoise.");
 SetConsoleTextAttribute(hOut, CharacterAttributes.BACKGROUND_BLUE |
 CharacterAttributes.BACKGROUND_GREEN |
 CharacterAttributes.BACKGROUND_RED);
 Console.WriteLine("This text is reverse video.");
 SetConsoleTextAttribute(hOut, CharacterAttributes.FOREGROUND_BLUE |
 CharacterAttributes.FOREGROUND_GREEN |
 CharacterAttributes.FOREGROUND_RED);

 // Wait until the user is done viewing the information.
 Console.Write("\r\nPress any key when ready...");
 Console.Read();
}

As you can see from the source listing, most of the Win32 API functions in this example return a bool value
indicating success. The exception is GetConsoleFontSize(), which returns a COORD value containing the size
of the font. The use of a bool return value makes it easy to perform a quick check of call success.

The code begins by displaying the current cursor information. If the bVisible variable is true, then the cursor is
visible and the code displays the cursor size. Note that dwSize contains the size of the cursor as a percentage
of the character size. The code then uses the SetConsoleCursorInfo() function to change the size of the cursor.
Again, you need to specify the size of the cursor as a percentage of the character size. The example stops at
this point so you can see the new cursor size. When you press Enter, the code returns the cursor to normal.

The font information write−up in the Platform SDK documentation is unclear because it leads you to believe
that the GetCurrentConsoleFont() function returns the font size in the dwFontSize variable of the
CONSOLE_FONT_INFO structure. What you actually receive in the dwFontSize variable is the number of
characters on screen. The default character settings allow for 80 characters across by 25 characters down.
Consequently, you still need to use the GetConsoleFontSize() function to retrieve the actual size of the
characters in pixels.

Using Cursors and Fonts

121

Another problem with the documentation is that it tells you that you can retrieve the font values for the
maximum window size using the GetCurrentConsoleFont(), without defining the term "maximum window
size." As shown by the example, the maximum window size is determined by the current window size as well
as machine limitations. Increase the current window size and the font index returned by this function will
almost certainly increase. In short, the list returned by the code only reflects those fonts available in the
current window, not the fonts available to Windows as a whole. In addition, the returned sizes only apply to
the selected font, which is the raster font set in most cases. Windows also comes with a Lucida font for
console windows, which changes the output from the example quite a bit.

The character attributes work much as you think they might. However, you must provide a complete set of
attributes for every call to SetConsoleTextAttribute(). Any value you don’t supply is automatically reset to
nothing (black when working with colors). Therefore, if you want both foreground and background colors,
you must supply both background and foreground attributes as part of the call. In addition, the attributes that
begin with COMMON_LVB only apply to a double−byte character set (DBCS). If you want to see underlined
text on screen, you need to use a DBCS font. Unfortunately, the standard version of Windows sold in
English−speaking countries doesn’t include a DBCS font. Figure 6.7 shows the output from this example.

Figure 6.7: The cursor and font example shows just some of what you can do in a console application.

Determining the Console Window Title

Windows will assign a default title to the console window when you create it—normally the name of the
execution including path information. In some cases, the default title works just fine. However, there are times
when you might want to personalize the window title to reflect the current application. To check the current
title you’ll use the GetConsoleTitle() function—the SetConsoleTitle() function enables you to change the
current title into something more appropriate. Listing 6.8 shows how to use these two functions. You’ll find
the example code in the \Chapter 06\C#\WindowTitle and the \Chapter 06\VB\WindowTitle folders on the
CD.

Listing 6.8: Changing and Restoring the Console Window Title

// This function retrieves the current window title.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern Int32 GetConsoleTitle(StringBuilder lpConsoleTitle,
 Int32 nSize);

// This function sets a new window title.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool SetConsoleTitle(String lpConsoleTitle);

[STAThread]
static void Main(string[] args)
{

Determining the Console Window Title

122

 StringBuilder WindowTitle; // The current window title.
 Int32 TitleSize; // The size of the buffer.

 // Obtain the current window title.
 WindowTitle = new StringBuilder(256);
 TitleSize = GetConsoleTitle(WindowTitle, 256);
 Console.WriteLine("The Old Window Title Is: \r\n" +
 WindowTitle.ToString());

 // Create a new console window title.
 Console.WriteLine("\r\nSetting a new console window title.");
 SetConsoleTitle("A New Window Title");
 Console.Write("Press any key to restore the old title...");
 Console.ReadLine();

 // Restore the old console window title.
 SetConsoleTitle(WindowTitle.ToString());

 // Wait until the user is done viewing the information.
 Console.Write("\r\nPress any key when ready...");
 Console.Read();
}

Like other examples of Win32 API functions that modify a string buffer, the GetConsole−Title() function
relies on a StringBuilder variable to hold the returned string value. Of course, you have to allocate the
buffer—something you can do when declaring the variable or as a separate step for clarity. You must also
provide the size of the buffer as part of the call.

The code could have used a StringBuilder variable for the SetConsoleTitle() function as well, but a String
works fine in this case. Changing the title produces the result shown in Figure 6.8. The only inconvenient
aspect of using a string for the SetConsoleTitle() function is that you need to convert the StringBuilder
variable to a string—something that’s easily done.

Figure 6.8: Changing the console window title is easy using the Win32 API functions.

Manipulating the Console Screen Buffer

What precisely is a screen buffer? It’s the area of memory set aside to represent the contents of the screen.
Windows applications don’t write directly to video memory, so they require some area of regular memory in
which to place their data. When Windows updates that actual video memory, it considers the content of the
screen buffer for each application. Consequently, knowing something about the console screen buffer can help
you create a better user environment for your application.

Manipulating the Console Screen Buffer

123

Sometimes you need to move some text around on screen. The easiest way to do this is to use the
ScrollConsoleScreenBuffer() function to move the text. You can move any part of the screen buffer to any
other part of the screen buffer, making this function exceptionally useful when displaying text on screen. Of
course, the movement of text is limited by the clipping rectangle for the window. If part of the text will appear
in an off−screen area as a result of the move, then the function merely clips the text to fit. You need to
validate that any text movement you perform will stay on screen (unless you actually want to clip the text to
fit within certain confines).

An application isn’t limited to one screen buffer, but it must have at least one screen buffer to write any text to
the console. You create a new screen buffer using the CreateConsoleScreenBuffer() function. The interesting
part about creating a new screen buffer is that you can select a level of sharing for the buffer, which means
two processes could potentially work with the same buffer. Use the SetConsoleActiveScreenBuffer() function
to set the screen buffer that Windows uses for display purposes. This function also enables you to draw the
content of the console screen in the background, and then display it in the foreground— creating a type of
animation for the console.

Finally, you can use the SetConsoleScreenBufferSize() function to change the number of rows and columns
displayed by the console. This function is especially handy when the default console window is too small or
large for the task at hand. Listing 6.9 demonstrates some of the functions described in this section. You can
find the source code in the \Chapter 06\C#\ScreenBuffer and \Chapter 06\VB\ScreenBuffer folders on the CD.
(The source listing in Listing 6.9 is incomplete—check the source code on the CD for functions and structures
discussed in previous sections of the chapter.)

Listing 6.9: Methods for Working with the Console Screen Buffer

// This function enables you to move part of the screen buffer
// to another location.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool ScrollConsoleScreenBuffer(
 IntPtr hConsoleOutput,
 ref SMALL_RECT lpScrollRectangle,
 ref SMALL_RECT lpClipRectangle,
 COORD dwDestinationOrigin,
 ref CHAR_INFO lpFill);

// This function enables you to move part of the screen buffer
// to another location.
[DllImport("kernel32.dll", SetLastError=true)]
public static extern bool ScrollConsoleScreenBuffer(
 IntPtr hConsoleOutput,
 ref SMALL_RECT lpScrollRectangle,
 IntPtr NoClipRectangle,
 COORD dwDestinationOrigin,
 ref CHAR_INFO lpFill);

// This structure defines a rectangular area on the screen
// consisting of an upper left and a lower right corner.
[StructLayout(LayoutKind.Sequential)]
public struct SMALL_RECT
{
 public Int16 Left;
 public Int16 Top;
 public Int16 Right;
 public Int16 Bottom;
}

Manipulating the Console Screen Buffer

124

[StructLayout(LayoutKind.Sequential)]
public struct CHAR_INFO
{
 public Char Character;
 public CharacterAttributes Attributes;
}

 [STAThread]
static void Main(string[] args)
{
 IntPtr hOut; // Handle to the output device.
 SMALL_RECT ScrollRect; // The area to scroll on screen.
 COORD Dest; // The scrolled area destination.
 CHAR_INFO FillData; // The data to put in the scrolled area.

 // Obtain a handle to the console screen.
 hOut = GetStdHandle(StdHandleEnum.STD_OUTPUT_HANDLE);

 // Display some data on screen.
 Console.WriteLine("This is some data to scroll.");
 Console.Write("Press any key to scroll...");
 Console.ReadLine();

 // Initialize the variables.
 ScrollRect.Top = 0;
 ScrollRect.Left = 0;
 ScrollRect.Right = 15;
 ScrollRect.Bottom = 5;

 Dest.X = 20;
 Dest.Y = 10;

 FillData.Attributes = CharacterAttributes.FOREGROUND_BLUE |
 CharacterAttributes.FOREGROUND_RED |
 CharacterAttributes.FOREGROUND_INTENSITY;
 FillData.Character = ‘A’;

 // Scroll an area of the screen.
 if (!ScrollConsoleScreenBuffer(hOut,
 ref ScrollRect,
 IntPtr.Zero,
 Dest,
 ref FillData))
 Console.WriteLine("Couldn’t scroll the screen buffer.");

 // Wait until the user is done viewing the information.
 Console.Write("\r\nPress any key when ready...");
 Console.Read();
}

This example shows you a couple of new tricks to use when working with Win32 API calls. The first problem
you need to overcome is allowing the clipping rectangle to contain a null value. Unfortunately, neither C# nor
Visual Basic will allow you to assign a null value (Nothing) to a structure, so you need to devise another way
to overcome the problem. There are a number of ways to do this, but the example code shows the most
convenient way. Simply create two declarations of the function. The first contains a place for the clipping
rectangle, while the second doesn’t.

Manipulating the Console Screen Buffer

125

The second problem is one that doesn’t even appear in the code, but could cause a problem if you don’t look
for it in the Platform SDK documentation. The CHAR_INFO structure contains a union as shown in the
following code:

typedef struct_CHAR_INFO {
 union {
 WCHAR UnicodeChar;
 CHAR AsciiChar;
 } Char;
 WORD Attributes;
} CHAR_INFO, *PCHAR_INFO;

A union is a special class type for C++ that says you must supply one of the data types to fill the structure, but
only one of the data types. The CHAR_INFO structure can accept either an ASCII character or a Unicode
character as its first data member. In this case, we don’t need to worry about the union because the .NET
language takes care of this concern automatically. However, in cases where the language doesn’t resolve the
problem for you, you’ll need to come up with a creative solution. In many cases, the best solution is to create
multiple versions of the data structure—one for each of the types listed in the union.

The actual mechanics of the ScrollConsoleScreenBuffer() function are straightforward. The code shows how
to fill out the data structures. The example moves some text that originally appears at the top of the screen to a
location around the middle of the screen as shown in Figure 6.9. The addition of a clipping rectangle makes it
easy to move text within a certain area of the display. Any text that appears outside of the clipping rectangle at
the time of the scroll remains untouched. Any text that would appear outside of the clipping rectangle after the
scroll is clipped.

Figure 6.9: Moving text around on screen is easy when using the ScrollConsoleScreenBuffer() function.

Where Do You Go from Here?

This chapter has shown you some of the things you can do to make your next console application a little easier
to use and more functional. Of course, a console application will never have the same level of user interface
functionality that you’ll find in a GUI application, but the fact remains that most console applications today
are decidedly Spartan. Fortunately, you can still access the Win32 API to fill the holes in coverage left by the
.NET Framework.

One of the things you should do now that you know how to accomplish the tasks presented in this chapter is
look at some of your current applications. Ask yourself whether some of the dialog−based utilities that you
currently provide as part of your application would work better as a console−based application. Remember
that the main reason to use a console−based application is to provide an easy method for administrators to
script the application and to reduce the dependence of the application on the GUI. You’ll also want to spruce

Where Do You Go from Here?

126

up your existing console applications. Make sure the applications provide a reliable and useful appearance.
Even console applications should work well and keep the user’s needs in mind.

It’s important to begin creating toolkits of missing Win32 API functions—essentially DLLs that contain
functions you can call quickly from managed code and know that the function will work immediately without
an understanding of the underlying Win32 API calls. Console applications present a great opportunity for
building such DLLs because the number of functions is limited and working with the console screen is
somewhat easier than working with the GUI. Of course, you’ll want to create toolkits for your GUI
applications too, but now might be a good time to experiment with some of the console functions presented in
this chapter.

Chapter 7 continues the search for ways to plug the holes in the .NET Framework coverage of the Win32 API.
In this next chapter we’ll discuss easy access to hardware—especially lower−level hardware such as the serial
and parallel ports. The chapter concentrates on fairly generic hardware—you won’t find instructions for
creating an interface to specific hardware such as a certain model of camera. It’s also important to note that
this chapter will concentrate on standardized access using existing technology—you won’t learn how to create
a device driver with .NET (something that .NET is ill−equipped to handle in any event).

Where Do You Go from Here?

127

Chapter 7: Accessing the Hardware Directly

Overview

Hardware, the underlying physical element of the computing world, is also the most difficult part of an
application to develop in many cases. It seems as though every piece of hardware has a different interface
from every other piece of hardware. For example, you can find hard drives that use SCSI, IDE, EIDE, USB,
FireWire, and a host of other interfaces—all of which require different programming techniques. In fact,
developing applications that work with all kinds of hardware used to be a major undertaking in the world of
DOS because every vendor had to start from scratch.

Fortunately, you don’t have to worry about touching the hardware directly in Windows—device drivers and
other pieces of software shield the application developer from the strange inner workings of the hardware and
present a reasonably simple interface. However, the .NET developer will find that hardware is the one area
where .NET support is lacking in a big way. Sure, you can access common devices like the hard drive using
objects such as streams, but once you get past the truly common hardware, you’ll find that access becomes
significantly more difficult.

Note Some developers will attempt the impossible with the .NET Framework. While Microsoft might have
some future plans to create a low−level programming environment for the .NET Framework, the basic
goal for the .NET Framework today is application development. In essence, this means you shouldn’t
attempt to write a device driver in .NET; it’s unlikely to work at all. Not only do the files required to run
CLR load well after the device drivers under Windows, but there’s simply no way to create the required
low−level access. The point is that you should use the techniques in this chapter to extend your grasp of
hardware essentials for applications, not attempt to write code that will certainly fail. If you do decide
there’s some low−level code in your future, check out Visual C++, Platform SDK, and the Driver
Development Kit (DDK).

The main purpose of this chapter is to help you overcome some of the major holes in hardware support
currently found in the .NET Framework. We’ll discuss common, but lower−level hardware such as the
parallel and serial ports. You’ll also learn how to access an add−on device—the joystick, in this case, and a
bus, USB for this chapter. These four examples will help you understand the requirements for accessing many
of the pieces of hardware that the .NET Framework doesn’t support. The examples will provide the
information you need to interact with other pieces of hardware on the system. Of course, the one overriding
assumption in this chapter is that you already have a device driver to provide standardized access to the
device; I’m not going into the details of device driver development.

When is Direct Access Required?

It would be easy to say that Microsoft was negligent in leaving out hardware access in the .NET Framework.
However, given the goal of providing basic functionality for business users, Microsoft actually did a great job
with this first version of .NET. The problem is figuring out where .NET falls down on the job so that you can
make a reasonable choice about using the Win32 API to provide the hardware access that your application
needs. Here’s a list of the three questions you should ask yourself.

Can I provide the required access using some other technique? The .NET Framework provides a
lot of hidden functionality that Microsoft markets for one reason, but you can use for another. For

1.

128

example, data streams are an extremely powerful .NET Framework feature and will work fine in
many situations. For example, if you need to send output to the printer, you can use a data stream and
associated printer objects to do it. However, if you need to ascertain that the paper holder is empty,
then a data stream isn’t going to perform the task and you’ll need to rely on direct hardware access in
most cases.
Will a technology such a DirectX solve the problem? DirectX is a powerful technology that
Microsoft supports fully—even more fully than the Win32 API in many cases. You still have to use
the Win32 API to use DirectX (as explained in Part IV of the book), but DirectX provides certain
safeguards and efficiencies you might not find the general Win32 API functions. In addition,
Microsoft may release .NET Framework support for DirectX sooner than it will for older Win32 API
functions. This means that you can develop the application to use DirectX today and will find it easier
to convert to a pure .NET Framework implementation tomorrow. Of course, DirectX is a
multimedia−specific solution—you won’t find it very useful for creating a utility to enumerate the
devices on your USB.

2.

Is there a COM object that can provide the support that I need for my application? Using a
COM object is always easier than trying to create a new library from scratch. Remember that you can
import COM objects into the .NET environment and the Visual Studio IDE will perform all (or at
least most) of the transformation for you. While this approach still means that you’re accessing
unmanaged code, at some point, all of the details of the access are hidden from view. As far as the
application is concerned, the access is transparent. In addition, you’ll save yourself quite a few hours
of work trying to create library routines to perform the direct access. One of the most common
devices that supports COM object is the serial port, but you’ll also find COM libraries suitable for use
with parallel ports, RS−422 port, common scientific equipment, and many types of medical
equipment.

3.

Tip There are a number of places that you should consider looking for ready−made components and hardware
access information. Of course, the best place to look for information on accessing your hardware is the
vendor Web site, but sometimes that’s a lost cause and you need to look elsewhere. There are many good
places to look for components and controls on the Internet. One of the more interesting places is the
HalloGram Publishing site at http://www.hallogram.com/menus/Controls_Creation_Utilities.html. This
particular page is interesting because they include a lot of control creation tools you might not find
elsewhere. Another interesting place to look is Active−X.COM (http://www.active−x.com/). The only
problem with this site is that you’ll end up getting sidetracked by the sheer volume of controls they have
available. If you don’t find what you want at these two sites, try the 4Developers link page at
http://www.4developers_.com/links/. This site contains a number of links for ActiveX control vendors, as
well as other developer resources. Finally, WinSite has a number of programmer categories on their site at
http://www.winsite.com/winnt/. Many of the components on this site work just fine with .NET
applications. Of course, you’ll need to ensure that any component you download will work with the
hardware you want to use.

Sometimes there’s no way around the direct access question—you must use the Win32 API to accomplish the
task. For example, any application requirement to request status information from the hardware isn’t
supported by the .NET Framework. If you want to know whether the serial port is configured to use 8−bit data
transfers, you’ll need to use a Win32 API function to do it. Likewise, requesting parallel, router, bus, or any
other hardware status information will require a Win32 API (or sometimes a third−party library) call.
Fortunately, this gap in support doesn’t extend to virtual devices, such as the display or desktop, which are
fully accessible using .NET Framework calls.

All esoteric devices will require complete support by the Win32 API or a third−party library. For example, if
you attach a camera to the USB or FireWire port on your computer and want to access it with a custom
application, you’ll need to write code that accesses it using the Win32 API or a third−party library.
Fortunately, you can overcome some of the problems of this approach by placing the routines in a DLL and

Chapter 7: Accessing the Hardware Directly

129

using it as a wrapper. Using this technique means you’ll only have to write a set of generic routines one time
to gain permanent access to the device in question.

Serial Port Access Examples

The serial port represents one of the oldest methods for accessing external peripherals on the PC. It’s
undergone several transformations over the years, but the basic operation of the serial port remains the same.
Even though the serial port is slow relative to faster options present in today’s computers (such as the USB
port), the serial port is still the data transfer method of choice for many peripherals and applications. The only
problem is that the .NET Framework doesn’t provide any direct support for the serial port and there isn’t any
way to determine information such as port status outside of the Win32 API.

Tip It’s possible to use existing COM controls to access the serial port for data transfer.
For example, the Microsoft Communication Control works well for this task.
However, you might run into problems when working with some controls supplied
with Visual Studio 6.0 under .NET. The Microsoft Knowledge Base article at
http://support.microsoft.com/default.aspx?scid=kb;en−us;Q318597 explains this
problem and how to fix it. If you do decide to use Visual Studio 6.0 controls in your
.NET application, you’ll need to copy the controls from the Visual Studio 6.0 disks
to your hard drive and register them using RegSvr32. These controls are licensed,
so you’ll also need to add the licensing information to the registry. The
README.TXT file located in the \Extras\VB6 Controls folder of Disk 4 of the
Visual Studio .NET Enterprise Edition distribution disks tells how to apply the
required licensing entries. There’s an excellent article on using the Microsoft
Communication Control under .NET (including instructions for creating a null
modem) at http://www.devhood.com/tutorials/tutorial_details.aspx?tutorial_id=320.
While this technique does work, it doesn’t provide the same level of access as the
Win32 API functions found in this chapter.

The following sections will explore several serial port examples. The main purpose of these examples is to
help you gain full access to the serial port using a combination of the .NET Framework and the Win32 API. I
won’t discuss a full−fledged communication program because that topic is discussed in better detail in other
books. What you’ll walk away with is the tools required to create any type of serial access, not just the access
used of data exchange.

Creating a Serial Stream

For those of us who’ve worked with the Win32 API for a while, the idea of needing to use the Win32 API to
do something as simple as open the serial port might seem a bit strange. In fact, the .NET framework did
provide a means to open the serial port using a FileStream object during the beta. You should be able to use
something as simple as the following code to open the serial port:

FileStream FS = new FileStream("COM1:", FileMode.Open);

Unfortunately, support for this particular call disappeared into the abyss during the beta process, never to
return in the released product. In fact, if you attempt to use this code today, you’ll receive an error message
like the one shown in Figure 7.1. The message is cryptic—what is the CreateFile() function? It doesn’t exist in
the .NET Framework. In fact, this message is Microsoft’s way of telling you that you need to use the Win32
API to perform the desired task—a tacit admission that the .NET Framework is far from complete. This is one

Serial Port Access Examples

130

of many situations when an exception message will tell you which Win32 API function to use. Of course,
most of them have the clarity of the example shown in Figure 7.1 (or worse).

Figure 7.1: Using a FileStream object incorrectly yields error messages.

The fact remains that you need to create a serial stream in order to send or receive data using the serial port.
However, the method for creating this stream is a little more complex than you might have imagined. Listing
7.1 shows the code to send a simple message to the serial port. Of course, this code doesn’t include any status
checking code, which is a requirement when using the serial port to connect with another computer. However,
the listing does show a simple communication with the modem attached to COM3: on the example machine.
You’ll find the source code for this example in the \Chapter 07\C#\Serial1 and \Chapter 07\VB\Serial1 folders
on the CD.

The CreateFile() function has several arguments that could be NULL or set to zero. The example code shows
only one implementation of CreateFile(), but theoretically you’d need three additional overrides for a
complete implementation. A complete set of arguments would include both a template file and a set of
security attributes. You could also create overrides that include just the template file or just the security
attributes. The example doesn’t require any of these overrides and you won’t need them to perform direct
hardware access. Consequently, the example only includes the version of CreateFile() shown in Listing 7.1.

Listing 7.1: Use the Win32 API CreateFile() Function to Open the Serial Port

// Function used to create or open a file or other object including
// ports, consoles, mailslots, pipes, and disk devices. It returns a
// handle you can use to create a file stream. Make sure you always
// use the FileStream object whenever possible because this function
// is more complex.
[DllImport("Kernel32.DLL")]
public static extern IntPtr CreateFile(
 String lpFileName,
 DesiredAccess dwDesiredAccess,
 ShareMode dwShareMode,
 IntPtr NoSecurityAttributes,
 CreationDisposition dwCreationDisposition,
 FlagsAndAttributes dwFlagsAndAttributes,
 IntPtr NoTemplateFile);

// This enumeration defines the level of desired access. The
// enumeration contains a special member for querying the
// device without accessing it.
public enum DesiredAccess : uint
{
 QueryDeviceOnly = 0,
 GENERIC_READ = 0x80000000,
 GENERIC_WRITE = 0x40000000,
 GENERIC_EXECUTE = 0x20000000,
 GENERIC_ALL = 0x10000000,
 DELETE = 0x00010000,
 READ_CONTROL = 0x00020000,

Serial Port Access Examples

131

 WRITE_DAC = 0x00040000,
 WRITE_OWNER = 0x00080000,
 SYNCHRONIZE = 0x00100000,
 STANDARD_RIGHTS_REQUIRED = 0x000F0000,
 STANDARD_RIGHTS_READ = READ_CONTROL,
 STANDARD_RIGHTS_WRITE = READ_CONTROL,
 STANDARD_RIGHTS_EXECUTE = READ_CONTROL,
 STANDARD_RIGHTS_ALL = 0x001F0000,
 SPECIFIC_RIGHTS_ALL = 0x0000FFFF,
 ACCESS_SYSTEM_SECURITY = 0x01000000,
 MAXIMUM_ALLOWED = 0x02000000
}

// This enumeration defines the type of sharing to support. It
// includes a special member for no sharing at all.
public enum ShareMode
{
 NotShared = 0,
 FILE_SHARE_READ = 0x00000001,
 FILE_SHARE_WRITE = 0x00000002,
 FILE_SHARE_DELETE = 0x00000004
}

// This enumeration defines how the call will treat files or
// other objects that already exist. You must provide one of
// these values as input.
public enum CreationDisposition
{
 CREATE_NEW = 1,
 CREATE_ALWAYS = 2,
 OPEN_EXISTING = 3,
 OPEN_ALWAYS = 4,
 TRUNCATE_EXISTING = 5
}

// This enumeration defines additional flags and attributes the
// call will use when opening an object. This enumeration contains
// a special value for no flags or attributes.
public enum FlagsAndAttributes : uint
{
 None = 0,
 FILE_ATTRIBUTE_READONLY = 0x00000001,
 FILE_ATTRIBUTE_HIDDEN = 0x00000002,
 FILE_ATTRIBUTE_SYSTEM = 0x00000004,
 FILE_ATTRIBUTE_ARCHIVE = 0x00000020,
 FILE_ATTRIBUTE_NORMAL = 0x00000080,
 FILE_ATTRIBUTE_TEMPORARY = 0x00000100,
 FILE_ATTRIBUTE_OFFLINE = 0x00001000,
 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = 0x00002000,
 FILE_ATTRIBUTE_ENCRYPTED = 0x00004000,
 FILE_FLAG_WRITE_THROUGH = 0x80000000,
 FILE_FLAG_OVERLAPPED = 0x40000000,
 FILE_FLAG_NO_BUFFERING = 0x20000000,
 FILE_FLAG_RANDOM_ACCESS = 0x10000000,
 FILE_FLAG_SEQUENTIAL_SCAN = 0x08000000,
 FILE_FLAG_DELETE_ON_CLOSE = 0x04000000,
 FILE_FLAG_BACKUP_SEMANTICS = 0x02000000,
 FILE_FLAG_POSIX_SEMANTICS = 0x01000000,
 FILE_FLAG_OPEN_REPARSE_POINT = 0x00200000,
 FILE_FLAG_OPEN_NO_RECALL = 0x00100000,
 SECURITY_ANONYMOUS = 0x00000000,

Serial Port Access Examples

132

 SECURITY_IDENTIFICATION = 0x00010000,
 SECURITY_IMPERSONATION = 0x00020000,
 SECURITY_DELEGATION = 0x00030000,
 SECURITY_CONTEXT_TRACKING = 0x00040000,
 SECURITY_EFFECTIVE_ONLY = 0x00080000
}

// This constant value helps check for a bad handle.
public const int INVALID_HANDLE_VALUE = −1;

// This function closes most Windows handles, including
// all of the handles returned by the CreateFile() function.
[DllImport("Kernel32.DLL")]
public static extern bool CloseHandle(IntPtr hObject);

// The handle obtained using CreateFile().
IntPtr FileHandle;

// The object used to access the serial port.
FileStream FS;

private void btnTest_Click(object sender, System.EventArgs e)
{
 if (btnTest.Text == "Open")
 {
 // Open the serial port for use.
 FileHandle = CreateFile(
 cbModemSelect.Text,
 DesiredAccess.GENERIC_READ | DesiredAccess.GENERIC_WRITE,
 ShareMode.NotShared,
 IntPtr.Zero,
 CreationDisposition.OPEN_EXISTING,
 FlagsAndAttributes.None,
 IntPtr.Zero);

 // Verify we have a good handle.
 if (FileHandle.ToInt32() == INVALID_HANDLE_VALUE)
 {
 MessageBox.Show("Can’t open the serial port, " +
 "make sure it’s installed and not in use.",
 "Serial Port Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

 // Open a stream based on the serial port.
 FS = new FileStream(FileHandle, FileAccess.ReadWrite);

 // Display a success message.
 MessageBox.Show("Serial port is open!",
 "Serial Port Success",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 // Change the test button caption.
 btnTest.Text = "Close";

 // Enable the Test Modem button.
 btnTestModem.Enabled = true;
 }

Serial Port Access Examples

133

 else
 {
 // Close the serial port handle.
 if (CloseHandle(FileHandle))
 MessageBox.Show("Serial port is closed.",
 "Serial Port Success",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 // Change the test button caption.
 btnTest.Text = "Open";

 // Disable the Test Modem button.
 btnTestModem.Enabled = false;
 }
}

private void btnTestModem_Click(object sender, System.EventArgs e)
{
 byte []Input; // The input byte array.
 byte []Output; // The output byte array.
 char []Temp; // A temporary character array.
 int Counter; // Loop counter.

 // Place the input string into the temporary char array.
 Temp = txtInput.Text.ToCharArray();

 // Size the Input and Output byte arrays.
 Input = new byte[txtInput.Text.Length + 2];
 Output = new byte[4096];

 // Convert the temporary char array to a byte array.
 for (Counter = 0; Counter < txtInput.Text.Length; Counter++)
 Input[Counter] = Convert.ToByte(Temp[Counter]);

 // Add a return to the output.
 Input[Counter] = 10;
 Input[Counter + 1] = 13;

 // Write the data to the file stream.
 FS.Write(Input, 0, Input.Length);

 // Read the result from the file stream.
 FS.Read(Output, 0, Output.Length);

 // Convert the byte array to a temporary char array.
 Counter = 2;
 Temp = new char[4096];
 while ((Output[Counter] != 0) && Counter < 4095)
 {
 Temp[Counter − 2] = Convert.ToChar(Output[Counter]);
 Counter++;
 }

 // Display the result on screen.
 txtOutput.Text = new String(Temp);
}

The CreateFile() function is somewhat unforgiving, complicated to use, and prone to providing esoteric

Serial Port Access Examples

134

feedback. The example code reduces the complexity of the CreateFile() function by using as many
enumerations as possible as input. The use of enumerations at least guarantees the input arguments are valid.
However, notice the number of exceptions made for .NET within the enumerations. For example, the
DesiredAccess enumeration contains a special value for querying the device—a value not provided with the
C/C++ headers. If you use enumerations, make sure you also include the special documented values for the
argument.

Some of the enumerations for this example get rather lengthy. Adding to the complexity of using the
CreateFile() function is the fact that not every enumerated value works with every type of object. For
example, you wouldn’t want to use the CreationDisposition.CREATE_NEW value when working with a
device because you can’t create a new device. The CreationDisposition.CREATE_NEW value is normally
used with files. It’s tempting to remove enumerated values that you think you’ll never use, but this could lead
to problems down the road as other developers use your code. The enumerated values you never use might be
the ones the other developer requires for a special purpose.

It’s essential that you rely on a combination of the Platform SDK documentation and the C/C++ header files
when creating your Win32 API calls (as well as some intuition on how the .NET application environment will
react). The C/C++ header files define other FILE_ATTRIBUTE values, in this case, but they’re not safe to
use because they don’t appear within the Platform SDK documentation and there’s no overriding reason to
experiment with them. Even though the C/C++ header contains the following FILE_ATTRIBUTE values, you
won’t find them in the example code.

#define FILE_ATTRIBUTE_DIRECTORY 0x00000010
#define FILE_ATTRIBUTE_DEVICE 0x00000040
#define FILE_ATTRIBUTE_SPARSE_FILE 0x00000200
#define FILE_ATTRIBUTE_REPARSE_POINT 0x00000400
#define FILE_ATTRIBUTE_COMPRESSED 0x00000800

We also have another Visual C++ macro problem in this example. Four of the values are actual macros, not
defines. There are situations when you’ll have to make a choice between precise accuracy and the needs of
your application. Consequently, the four macro values shown in the following code are transformed into
actual values.

#define SECURITY_ANONYMOUS (SecurityAnonymous << 16)
#define SECURITY_IDENTIFICATION (SecurityIdentification << 16)
#define SECURITY_IMPERSONATION (SecurityImpersonation << 16)
#define SECURITY_DELEGATION (SecurityDelegation << 16)

This is one case where there’s a minimum potential for problems in converting from a macro value. The other
SECURITY values are included as actual values and the converted forms follow in sequence as you might
expect. However, you need to exercise care in handling macros to ensure you don’t end up with something
that won’t work later—Microsoft has a habit of changing its mind. The btnTest_Click() function is the first
one that the user will access. It either opens or closes the selected serial port based on the current button
caption. Opening a device requires the name of the device and the level of access (read, write, or both).
Generally, you won’t want to share a device with another application, so one of the special enumerations tells
Windows not to allow sharing. Finally, the code must specify CreationDisposition.OPEN_EXISTING
because an application can’t create a new device.

The next step is to check the handle returned by CreateFile(). If the handle is set to
INVALID_HANDLE_VALUE, you can’t use it. You’ll normally receive a bad handle if the serial port
doesn’t exist or another application is using it. Don’t attempt to open a file stream if you receive a bad handle.

Serial Port Access Examples

135

Finally, the code opens the file stream using the handle returned by CreateFile(). Notice that you still have to
specify a FileAccess value. The FileAccess value must match the level of access you requested from
CreateFile() or the application will report strange (and non−reproducible) errors.

Closing the serial port once you’ve finished using it is easy. Simply use the CloseHandle() function. This
Win32 API function works with a number of handle types, including all of the handles that CreateFile() can
return. It’s important to verify that the serial port is actually closed. There are situations when the device
driver is waiting for status or other information and won’t close immediately. If your application shuts down
without closing the port, the user will have to reboot, in most cases, to close it. The example displays a simple
success message, but generally you’ll want to provide some level of error trapping as well in a production
application.

The btnTestModem_Click() method is only active when the serial port is open. The FileStream object only
accepts a byte array as input (or a reasonable facsimile). Unfortunately, the TextBox controls used by the
example only handle strings. They also provide conversions for char arrays, which won’t work with the
FileStream object either. The example shows one of several ways you can convert text to a byte array and
back. The biggest issue, in this case, is to ensure the buffers you use are large enough. Otherwise, the
application might fail due to a buffer overflow. Figure 7.2 shows typical output from this application. You can
use any of the AT commands supported by your modem for testing (although the ATI commands provide
informational output that’s easy to validate).

Figure 7.2: The example _application enables you to check the _status of your modem using AT commands.

Determining the Port Status

The Win32 API provides a wealth of functions that help you determine the current serial port and modem
status. For example, you can use the GetCommConfig() function to determine the modem provider status as
well as obtain device control block (DCB) information about the attached device. Each of the functions uses a
special structure you need to include with the function call. In some cases, you’ll find there are structures
within structures. The COMMCONFIG data structure used with the GetCommConfig() function includes a
DCB structure that’s also used with the GetCommState() function.

This example shows how to obtain the current port status and display the information on screen. You’ll need
this information to determine facts about the serial port in question, such as the availability of a modem (some

Determining the Port Status

136

functions return more information when a modem is attached to the serial port). Listing 7.2 shows the code for
this example. You’ll find the source code for this example in the \Chapter 07\C#\Serial2 and \Chapter
07\VB\Serial2 folders on the CD. Note that this code isn’t complete—I’ve used code from the preceding
example to open and close the port. The complete code appears on the CD.

Listing 7.2: A Common Port Status Function is GetCommState()

// This function returns the current control settings for the
// specified communications device.
[DllImport("Kernel32.DLL")]
public static extern bool GetCommState(IntPtr hFile,
 ref DCB dcb);

// This structure contains the control settings.
[StructLayout(LayoutKind.Sequential, Pack=1)]
public struct DCB
{
 public Int32 DCBlength;
 public Int32 BaudRate;

 // This entire section consists of flags. Each flag
 // consumes a specific number of bits. The entire
 // flag is a UInt32 value.
 // public UInt32 fBinary; // 1 bit
 // public UInt32 fParity; // 1 bit
 // public UInt32 fOutxCtsFlow; // 1 bit
 // public UInt32 fOutxDsrFlow; // 1 bit
 // public UInt32 fDtrControl; // 2 bits
 // public UInt32 fDsrSensitivity; // 1 bit
 // public UInt32 fTXContinueOnXoff; // 1 bit
 // public UInt32 fOutX; // 1 bit
 // public UInt32 fInX; // 1 bit
 // public UInt32 fErrorChar; // 1 bit
 // public UInt32 fNull; // 1 bit
 // public UInt32 fRtsControl; // 2 bits
 // public UInt32 fAbortOnError; // 1 bit
 // public UInt32 fDummy2; // 17 bits
 public UInt32 Flags;

 public Int16 wReserved;
 public Int16 XonLim;
 public Int16 XoffLim;
 public Byte ByteSize;
 public Byte Parity;
 public Byte StopBits;
 public Char XonChar;
 public Char XoffChar;
 public Char ErrorChar;
 public Char EofChar;
 public Char EvtChar;
 public Int16 wReserved1;
}

// This enumeration helps determine the flag
// values returned in the DCB structure.
public enum SeeFlags
{
 Binary = 0x0001, // 1 bit
 Parity = 0x0002, // 1 bit
 OutxCtsFlow = 0x0004, // 1 bit

Determining the Port Status

137

 OutxDsrFlow = 0x0008, // 1 bit
 DtrControl = 0x0010, // 2 bits
 DsrSensitivity = 0x0040, // 1 bit
 TXContinueOnXoff = 0x0080, // 1 bit
 OutX = 0x0100, // 1 bit
 InX = 0x0200, // 1 bit
 ErrorChar = 0x0400, // 1 bit
 Null = 0x0800, // 1 bit
 RtsControl = 0x1000, // 2 bits
 AbortOnError = 0x4000, // 1 bit
 Dummy2 = 0x8000, // 17 bits

 // These special flag values handle the
 // two bit flags.
 DTR_CONTROL_DISABLE = 0x0000, // 0x00 in C header
 DTR_CONTROL_ENABLE = 0x0010, // 0x01 in C header
 DTR_CONTROL_HANDSHAKE = 0x0020, // 0x02 in C header
 RTS_CONTROL_DISABLE = 0x0000, // 0x00 in C header
 RTS_CONTROL_ENABLE = 0x1000, // 0x01 in C header
 RTS_CONTROL_HANDSHAKE = 0x2000, // 0x02 in C header
 RTS_CONTROL_TOGGLE = 0x3000 // 0x03 in C header
}

// This enumeration determines the parity type.
public enum CommParity
{
 NOPARITY = 0,
 ODDPARITY = 1,
 EVENPARITY = 2,
 MARKPARITY = 3,
 SPACEPARITY = 4
}

// This enumeration determines the number of stop bits.
public enum CommStopBits
{
 ONESTOPBIT = 0,
 ONE5STOPBITS = 1,
 TWOSTOPBITS = 2
}

private void btnTest_Click(object sender, System.EventArgs e)
{
 DCB DevInfo; // The device status information.
 StringBuilder SB; // Converted status data.
 Int32 SpecChr; // The special character conversion.

 // Open the communications port.
 if (!CommOpen())
 {
 MessageBox.Show("Can’t open the serial port, " +
 "make sure it’s installed and not in use.",
 "Serial Port Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

 // Initialize the DCB.
 DevInfo = new DCB();

Determining the Port Status

138

 // Get the current control status.
 if (!GetCommState(FileHandle, ref DevInfo))
 MessageBox.Show("Couldn’t retrieve the device control block.",
 "Status Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Fill the StringBuilder with data.
 SB = new StringBuilder();
 SB.Append("Baud Rate = " + DevInfo.BaudRate.ToString());

 // The single bit flags require special handling.
 if ((DevInfo.Flags & (UInt32)SeeFlags.Binary)
 == (UInt32)SeeFlags.Binary)
 SB.Append("\r\nBinary Transfer Enabled");
 if ((DevInfo.Flags & (UInt32)SeeFlags.Parity)
 == (UInt32)SeeFlags.Parity)
 SB.Append("\r\nParity Checking Enabled");
 if ((DevInfo.Flags & (UInt32)SeeFlags.OutxCtsFlow)
 == (UInt32)SeeFlags.OutxCtsFlow)
 SB.Append("\r\nClear to Send (CTS) Signal is Monitored");
 if ((DevInfo.Flags & (UInt32)SeeFlags.OutxDsrFlow)
 == (UInt32)SeeFlags.OutxDsrFlow)
 SB.Append("\r\nData Set Ready (DSR) Signal is Monitored");
 if ((DevInfo.Flags & (UInt32)SeeFlags.DsrSensitivity)
 == (UInt32)SeeFlags.DsrSensitivity)
 SB.Append("\r\nCommunications Driver DSR Sensitive");
 if ((DevInfo.Flags & (UInt32)SeeFlags.TXContinueOnXoff)
 == (UInt32)SeeFlags.TXContinueOnXoff)
 SB.Append("\r\nData Transfer Continues With Full Input Buffer");
 if ((DevInfo.Flags & (UInt32)SeeFlags.OutX)
 == (UInt32)SeeFlags.OutX)
 SB.Append("\r\nXON/XOFF Enabled During Transmission");
 if ((DevInfo.Flags & (UInt32)SeeFlags.InX)
 == (UInt32)SeeFlags.InX)
 SB.Append("\r\nXON/XOFF Enabled During Reception");
 if ((DevInfo.Flags & (UInt32)SeeFlags.ErrorChar)
 == (UInt32)SeeFlags.ErrorChar)
 SB.Append("\r\nBytes with Errors Replaced with Error Character");
 if ((DevInfo.Flags & (UInt32)SeeFlags.Null)
 == (UInt32)SeeFlags.Null)
 SB.Append("\r\nNULL Bytes Discarded When Received");
 if ((DevInfo.Flags & (UInt32)SeeFlags.AbortOnError)
 == (UInt32)SeeFlags.AbortOnError)
 SB.Append("\r\nRead/Write Operation Aborted After an Error");

 // Process the DTR two−bit flag
 if ((DevInfo.Flags & (UInt32)SeeFlags.DTR_CONTROL_ENABLE)
 == (UInt32)SeeFlags.DTR_CONTROL_ENABLE)
 SB.Append("\r\nData Terminal Ready (DTR) Handling Enabled");
 else
 if ((DevInfo.Flags & (UInt32)SeeFlags.DTR_CONTROL_HANDSHAKE)
 == (UInt32)SeeFlags.DTR_CONTROL_HANDSHAKE)
 SB.Append("\r\nData Terminal Ready (DTR) Hand Shaking Enabled");
 else
 SB.Append("\r\nData Terminal Ready (DTR) Handling Disabled");

 // Process the RTS two−bit flag.
 if ((DevInfo.Flags & (UInt32)SeeFlags.RTS_CONTROL_ENABLE)
 == (UInt32)SeeFlags.RTS_CONTROL_ENABLE)
 SB.Append("\r\nReady to Send (RTS) Handling Enabled");

Determining the Port Status

139

 else
 if ((DevInfo.Flags & (UInt32)SeeFlags.RTS_CONTROL_HANDSHAKE)
 == (UInt32)SeeFlags.RTS_CONTROL_HANDSHAKE)
 SB.Append("\r\nReady to Send (RTS) Hand Shaking Enabled");
 else
 if ((DevInfo.Flags & (UInt32)SeeFlags.RTS_CONTROL_TOGGLE)
 == (UInt32)SeeFlags.RTS_CONTROL_TOGGLE)
 SB.Append("\r\nReady to Send (RTS) High When Data Available");
 else
 SB.Append("\r\nReady to Send (RTS) Handling Disabled");

 // Process the remaining data fields.
 SB.Append("\r\nXON Character Limit: " +
 DevInfo.XonLim.ToString());
 SB.Append("\r\nXOFF Character Limit: " +
 DevInfo.XoffLim.ToString());
 SB.Append("\r\nByte Size: " +
 DevInfo.ByteSize.ToString());

 // Determine the parity type.
 switch (DevInfo.Parity)
 {
 case (byte)CommParity.EVENPARITY:
 SB.Append("\r\nUsing Even Parity");
 break;
 case (byte)CommParity.MARKPARITY:
 SB.Append("\r\nUsing Mark Parity");
 break;
 case (byte)CommParity.NOPARITY:
 SB.Append("\r\nUsing No Parity");
 break;
 case (byte)CommParity.ODDPARITY:
 SB.Append("\r\nUsing Odd Parity");
 break;
 case (byte)CommParity.SPACEPARITY:
 SB.Append("\r\nUsing Space Parity");
 break;
 default:
 SB.Append("\r\nCouldn’t Determine the Parity");
 break;
 }

 // Determine the number of stop bits.
 switch (DevInfo.StopBits)
 {
 case (byte)CommStopBits.ONESTOPBIT:
 SB.Append("\r\nUsing 1 Stop Bit");
 break;
 case (byte)CommStopBits.ONE5STOPBITS:
 SB.Append("\r\nUsing 1.5 Stop Bits");
 break;
 case (byte)CommStopBits.TWOSTOPBITS:
 SB.Append("\r\nUsing 2 Stop Bits");
 break;
 default:
 SB.Append("\r\nCouldn’t Determine the Number of Stop Bits");
 break;
 }

 // List the special characters.
 SpecChr = Convert.ToInt32(DevInfo.XonChar);

Determining the Port Status

140

 SB.Append("\r\nThe XON Character is: " +
 SpecChr.ToString());
 SpecChr = Convert.ToInt32(DevInfo.XoffChar);
 SB.Append("\r\nThe XOFF Character is: " +
 SpecChr.ToString());
 SpecChr = Convert.ToInt32(DevInfo.ErrorChar);
 SB.Append("\r\nThe Error Character is: " +
 SpecChr.ToString());
 SpecChr = Convert.ToInt32(DevInfo.EofChar);
 SB.Append("\r\nThe End of Data Character is: " +
 SpecChr.ToString());
 SpecChr = Convert.ToInt32(DevInfo.EvtChar);
 SB.Append("\r\nThe Event Character is: " +
 SpecChr.ToString());

 // Display the information on screen.
 txtOutput.Text = SB.ToString();

 // Close the communications port.
 if (!CommClose())
 MessageBox.Show("Can’t close the serial port, " +
 "make sure it’s not in use.",
 "Serial Port Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

}

There are some interesting new concepts to learn in this example. For example, the GetCommState() function
declaration is deceptively simple. All you have to supply are two arguments—what could be simpler?
However, the reality is that the complexity of this call is hidden in the DCB structure. Hidden complexity is a
common theme throughout the Win32 API calls. Many of the really interesting functions require construction
of complex data structures that might contain information derived from other calls, which makes the
supposedly simple call quite complicated.

The DCB structure has a feature we haven’t really had to work with in the past—a flag data element. The
commented text shows the various flag values. However, it’s important to note that they appear as DWORD
values in the Platform SDK documentation. Your only clue that these values are all part of a single DWORD
value is the "f" in front of each value. Fortunately, the majority of the flags consume a single bit, which makes
them easier to interpret than multiple−bit flags. All you need to perform is a simple comparison (as we’ll see
later in this example).

Single−bit flags are problematic, but easily handled with special enumerations that you compare to the flag
value individually. The two−bit flag values for RTS and DTR present special problems. If you look in the
C/C++ header files, you’ll notice that these values are defined as shown here.

//
// DTR Control Flow Values.
//
#define DTR_CONTROL_DISABLE 0x00
#define DTR_CONTROL_ENABLE 0x01
#define DTR_CONTROL_HANDSHAKE 0x02

//
// RTS Control Flow Values
//

Determining the Port Status

141

#define RTS_CONTROL_DISABLE 0x00
#define RTS_CONTROL_ENABLE 0x01
#define RTS_CONTROL_HANDSHAKE 0x02
#define RTS_CONTROL_TOGGLE 0x03

The problem with these values is that they assume you have isolated the two−bit values and are looking at
them as individual values. Unfortunately, our flag is a single 32−bit value that contains the values in bit
positions other than the starting bits, so we have to offset the values. That’s where the special two−bit field
values come from in the code. These values represent that DTR and RTS values as they actually appear to C#,
rather than to a Visual C++ application. The SeeFlags enumeration contains the translated values so you can
see how to put them together. Unfortunately, you’ll have to put these flag enumerations together
yourself—the Platform SDK won’t offer any help in this area.

Tip There are times when an enumeration is actually superfluous. For example, the Platform
SDK documentation provides a listing of indexes for the BaudRate field of the DCB
structure. However, the enumerated values are the same as the baud rate. Unless you have
some reason to include the enumeration, using the BaudRate field as returned from the
GetCommConfig() function will work best.

The code begins with a call to CommOpen() and ends with a call to CommClose(). These functions aren’t
special Win32 API calls that I forgot to document—they’re special implementations of the code found in
Listing 7.1. The CommOpen() function opens the serial port selected on the dialog box, while the
CommClose() function closes the serial port. These two functions represent a partial generalization of the
code and you could easily place it within a DLL for use with any application you might create.

In past examples, the code set the individual values of the data structures—a perfectly valid method for
making a Win32 API call. In this example the DevInfo variable is set to a new instance of the DCB structure.
This second method for initializing a structure assumes a default value for each structure member (such as 0
for numeric values). This second method works better in cases where you plan to call a function to obtain
default values because you don’t need to worry about setting each structure member individually.

Tip The code uses a StringBuilder object, SB, to hold the port status information. You’ll find that
this technique uses fewer system resources and gives your application a performance boost.

Many of the DevInfo structure members are easy to display. All you have to do is convert the member to a
string. However, this technique only works for the integer members of the structure, we also have flag, byte,
and char members to consider in this case, so the code uses a variety of techniques for conversion purposes.

As you can see, the single bit flags require a simple comparison. You and the flag bit with the appropriate
SeeFlags enumeration member, and then verify the setting of that bit. A value of 1 indicates a true value in
most cases. The code then adds a new string element to SB that shows the enabled status of the flag.

Checking the status of the two−bit flags requires several comparisons. One of the key techniques is to perform
all of the comparisons that include at least one set bit. This makes the comparison code easier to create. If you
perform all of the comparisons with at least one bit set and none of them match, it’s usually safe to assume
that none of the bits are set and act accordingly.

The DevInfo.Parity and DevInfo.StopBits members are both byte values. As shown in the code, you can use a
simple enumeration combined with a switch structure to determine their value. The only caveat is that you
must translate the enumerated value to a byte value.

Determining the Port Status

142

The final set of values in DevInfo is the special characters used to signify special events in the data stream. All
five of these values are of type char, which means you’ll need to convert them into something you can display
on screen. The problem is that the default value for the special characters is a 0, which also signifies an end of
string character. The best approach, in this case, is to perform a two−step conversion. Change the char into an
Int32, and then convert the resulting number into a string. Figure 7.3 shows the output from this example.

Figure 7.3: The example application shows the status of the serial port and attached modem, if any.

Parallel Port Access Examples

One of the problems with working with the Win32 API is that it’s like an onion—there are several layers of
code between the developer and the device. At the lowest level is a device driver that relies on IOCTL
(input/output control) functions and direct hardware manipulation. Generally, it’s a good idea to leave the
device driver writing to vendors who have the required expertise.

Unfortunately, as you move up the layers of code, Microsoft makes assumptions about the hardware that
might not match the realities of your system. That’s what happens in the case of the parallel port—Microsoft
assumes that you’ll want to attach a printer to it and doesn’t provide much functionality in Windows to do
anything else with the parallel port. Consequently, if you want to do something special with the parallel port,
you’ll either have to rely on low−level commands or use a third−party library to gain the required access. Of
course, some parallel port peripherals are just like other types of devices that you normally find within the PC
and you can therefore access them using the same technique. For example, you access a tape drive the same
way whether it’s connected internally or relies on a parallel port connection.

Interestingly enough, the printer is one of the devices that don’t have a specific DLL in the \System32 folder.
The functions used to access a printer appear in the WinSpool.LIB file, which means you must write a
wrapper DLL in Visual C++ to use the printer−specific functions. This fact opens some possibilities for
creating special functions that are easy to use, but it also increases the complexity of the application as a
whole.

Tip Many developers are interested in the problems of accessing hardware using .NET. You can
find some interesting examples online in some cases. For example, you’ll find an interesting
example of how to interact with an X.10 (home automation) network at
http://www.gotdotnet.com/userfiles/gbrinkmann/X10%20Firecracker%20Interface.zip.
Another place to look for good example code is Lutz Roeder’s Programming .NET site at
http://www.aisto.com/roeder/dotnet/.

The two examples in this section show how to work with a printer connected to the parallel port. While the
.NET Framework provides a wealth of functions for sending data to the printer, it doesn’t provide anything to
obtain printer status information. Consequently, your application could experience an error and you wouldn’t

Parallel Port Access Examples

143

know that the printer was simply out of paper.

There are a number of functions you can use to obtain printer status information. For example, you can use the
GetPrinterDataEx() function to retrieve a single specific bit of information such as the default spool directory.
The main function is GetPrinter(), which relies on a host of data structures to tell you everything from the
printer name, to the provider setup, to the current printer status, including the condition of the paper tray. Of
course, the printer has to provide the information you need. Most laser printers provide a wealth of
information about their status, but you might find other types of printers lacking in some areas.

Creating the Wrapper DLL

The wrapper DLL does most of the work of retrieving the printer information from the Win32 API in this
case. There are times when you’ll need to write much of your Win32 API access code with the wrapper,
instead of the application, in mind. In this case, the functionality needed to access the printer appears in a
library, so it makes sense to create a function that will perform a specific sequence of steps. Listing 7.3 shows
the code to access the first−level printer information. The second−level printer access is about the same, so
Listing 7.3 shows only the first level (we’ll discuss the second−level data structure in the “Viewing the
Second Level of Printer Information” section of the chapter). You’ll find the source code for this portion of
the example in the \Chapter 07\PrinterAccess folder on the CD.

Listing 7.3: The Wrapper Code Performs Most of the Work in this Example

// This is the Level1 data structure.
__gc struct PrinterInfo1
{
 UInt32 Flags;
 String *pDescription;
 String *pName;
 String *pComment;
};

static bool GetPrinterLevel1Data(String* PrinterName,
 PrinterInfo1 **PI1)
{
 LPTSTR Name; // The printer name.
 HANDLE hPrinter = NULL; // Open printer handle.
 PRINTER_INFO_1 *PrnInfo; // Printer information buffer.
 DWORD dwSize = 0; // Actual buffer size.
 bool ReturnVal = true; // Determines the return value.

 // Convert the string.
 Name =
 (LPTSTR)Marshal::StringToHGlobalAnsi(PrinterName).ToPointer();

 // Attempt to open the printer without any special defaults.
 if (!OpenPrinter(Name, &hPrinter, NULL))
 {
 // An error has occured.
 // Free the memory allocated for the local pointer.
 Marshal::FreeHGlobal(Name);

 // Return a failure value.
 return false;
 }

 // Determine how big to make the data structure. If the printer

Creating the Wrapper DLL

144

 // doesn’t exist, the function will return 0.
 GetPrinter(hPrinter, 1, 0, 0, &dwSize);
 if (dwSize == 0)
 {
 ClosePrinter(hPrinter);
 return false;
 }

 // Allocate the required memory. If we can’t allocate the
 // memory, return a failure value.
 PrnInfo = (PRINTER_INFO_1 *)GlobalAlloc(GPTR, dwSize);
 if (!PrnInfo)
 {
 ClosePrinter(hPrinter);
 return false;
 }

 // Get the printer information.
 if (!GetPrinter(hPrinter,
 1,
 (LPBYTE)PrnInfo,
 dwSize,
 &dwSize))
 ReturnVal = false;

 // Transfer the data to the managed structure.
 PrinterInfo1 *Local = new PrinterInfo1();
 Local−>Flags = PrnInfo−>Flags;
 Local−>pComment = new String(PrnInfo−>pComment);
 Local−>pDescription = new String(PrnInfo−>pDescription);
 Local−>pName = new String(PrnInfo−>pName);
 *PI1 = Local;

 // Attempt to close the printer.
 if (!ClosePrinter(hPrinter))

 // If the attempt fails, return a failure value.
 ReturnVal = false;

 // Return a success value.
 return ReturnVal;
}

The first new element you’ll notice is that the data structure appears in the wrapper code, rather than in the
Visual Basic or C# code in this case. It’s easier to marshal the data from the unmanaged to the managed
environment if you keep the structure in the wrapper code. In addition, using this method means you only
have to write the wrapper code once—you can inherit it within the Visual Basic or C# code later.

This example shows how to convert a string into an unmanaged equivalent. The
Marshal::StringToHGlobalAnsi() function produces an ANSI string. If you want a Unicode string, you’ll need
to use the Marshal::StringToHGlobalUni() function. In either case, you must free the global memory allocated
by the function using the Marshal::FreeHGlobal() function. Because the garbage collector doesn’t know about
this memory, it won’t free the memory for you.

The next point of interest is the two−step process used to allocate memory for the PRINTER_INFO_1 data
structure, PrnInfo. The PrnInfo variable won’t be the right size unless you allocate memory for it. However,
the only way to find out how much memory to allocate is to call GetPrinter() without any buffer values. The

Creating the Wrapper DLL

145

dwSize variable returns with the amount of memory needed to store the printer information. You can then
allocate the memory using GlobalAlloc(). Make sure you typecast the pointer returned by this function
properly.

The second call to GetPrinter() returns the information you requested, but the information is in unmanaged
variables. The code shows one technique for transferring the data from the unmanaged environment to the
managed data structure passed by the calling function.

Notice the use of the Local intermediate variable. Using this technique will save you a lot of debugging time
later because you can check the result of every data translation.

It may appear that the code is checking for trouble every step of the way. The fact is that the example code
shows the minimum number of checks that your code should perform. Working with unsafe code means that a
lot more can go wrong, and you need to verify that every step works as anticipated. In most cases, you’ll want
to add code for raising an exception (this is a managed DLL, after all) and provide the caller with detailed
error information.

Viewing the First Level of Printer Information

The reason that so many developers use the GetPrinter() function is that it’s very versatile, and you choose
how much information to retrieve. The Platform SDK documentation specifies nine levels of information
retrieval for this function—each of which requires a unique data structure. For the .NET developer this means
that you’ll need a minimum of nine overrides for the GetPrinter() function to create a full implementation. The
example code shown in Listing 7.4 isn’t quite that ambitious. It shows you the first level of the GetPrinter()
_function information. You’ll find the source code for the first level of this example in the \Chapter
07\C#\Parallel1 and \Chapter 07\VB\Parallel1 folders on the CD.

Listing 7.4: Obtaining the Printer Status is a Matter of Choosing an Information Level

public enum PrintFlags
{
 PRINTER_ENUM_EXPAND = 0x00004000,
 PRINTER_ENUM_CONTAINER = 0x00008000,
 PRINTER_ENUM_ICON1 = 0x00010000,
 PRINTER_ENUM_ICON2 = 0x00020000,
 PRINTER_ENUM_ICON3 = 0x00040000,
 PRINTER_ENUM_ICON4 = 0x00080000,
 PRINTER_ENUM_ICON5 = 0x00100000,
 PRINTER_ENUM_ICON6 = 0x00200000,
 PRINTER_ENUM_ICON7 = 0x00400000,
 PRINTER_ENUM_ICON8 = 0x00800000
}

private void btnTest_Click(object sender, System.EventArgs e)
{
 // Create a structure to hold the printer data.
 Printer.PrinterInfo1 PI1 = new Printer.PrinterInfo1();

 // Create a StringBuilder to hold the results.
 StringBuilder SB = new StringBuilder();

 // Query the printer.
 if (!Printer.GetPrinterLevel1Data(txtPrinterName.Text, ref PI1))
 {
 // If the printer query doesn’t work, display an error.

Viewing the First Level of Printer Information

146

 MessageBox.Show("Printer query failed. It could" +
 " be in use by another application. Make sure" +
 " the printer actually exists.",
 "Printer Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 return;
 }

 // Interpret the string data.
 SB.Append("Name: " + PI1.pName);
 SB.Append("\r\nDescription: " + PI1.pDescription);
 SB.Append("\r\nComment: " + PI1.pComment);

 // Interpret the flags.
 if ((PI1.Flags & (UInt32)PrintFlags.PRINTER_ENUM_EXPAND)
 == (UInt32)PrintFlags.PRINTER_ENUM_EXPAND)
 SB.Append("\r\nThe provider has other objects to enumerate.");
 if ((PI1.Flags & (UInt32)PrintFlags.PRINTER_ENUM_CONTAINER)
 == (UInt32)PrintFlags.PRINTER_ENUM_CONTAINER)
 SB.Append("\r\nThis object contains other enumerable objects.");
 if ((PI1.Flags & (UInt32)PrintFlags.PRINTER_ENUM_ICON1)
 == (UInt32)PrintFlags.PRINTER_ENUM_ICON1)
 SB.Append("\r\nDisplay this object as a top level net name.");
 if ((PI1.Flags & (UInt32)PrintFlags.PRINTER_ENUM_ICON2)
 == (UInt32)PrintFlags.PRINTER_ENUM_ICON2)
 SB.Append("\r\nDisplay this object as a network domain.");
 if ((PI1.Flags & (UInt32)PrintFlags.PRINTER_ENUM_ICON3)
 == (UInt32)PrintFlags.PRINTER_ENUM_ICON3)
 SB.Append("\r\nDisplay this object as a printer server.");
 if ((PI1.Flags & (UInt32)PrintFlags.PRINTER_ENUM_ICON8)
 == (UInt32)PrintFlags.PRINTER_ENUM_ICON8)
 SB.Append("\r\nDisplay this object as a printer.");

 // Display the data on screen.
 txtOutput.Text = SB.ToString();
}

As you can see, the majority of this code is dedicated to displaying the data obtained with the wrapper DLL.
The data structure is relatively simple, so there isn’t much data to display. However, the level 1 data structure
does provide the basic elements displayed by Explorer as shown in Figure 7.4. You should also notice that
this code works with both local and network printers—there are times when the Win32 API requires separate
handling of local and remote requests.

Viewing the First Level of Printer Information

147

Figure 7.4: The level 1 data provides enough feedback for a basic Explorer display.

Note Many of the GetPrinter() function levels apply to specific versions of Windows. For example, levels 3
and 4 apply only to Windows NT, Windows 2000, and Windows XP. You can only use levels 7, 8, and 9
on a Windows 2000 or a Windows XP machine. The version specific nature of these levels means that
you need to determine which version of Windows the user has installed before making the call or the
application could crash. In addition, there’s an undocumented level 6 that some developers have
documented online, but a cautious developer would consider unsafe to use.

This data structure, like many other data structures in the book, contains a flag field. However, notice that the
code doesn’t check all of the flag values—it misses several of the icon flags. These flags are currently
undocumented, even though the function sometimes returns a value for them. Rather than return what could
be bad information to the user, it’s often best to ignore flags marked reserved for future use.

Viewing the Second Level of Printer Information

If you thought the level 1 printer information was sparse, you’ll be pleased by the level 2 information. You
can find out almost every piece of information about the printer using the level 2 version of GetPrinter(). In
fact, it’s easy to go into information overload because this level provides everything from the printer name, to
its security settings, to the printer statistics. For example, you can find out the current form type and the size
of the paper use, as well as the number of pages the printer can output per minute.

Note You’ll find the source code for the second level of this example in the \Chapter 07\C#\Parallel2 and
\Chapter 07\VB\Parallel2 folders on the CD. Make sure you also view the second−level wrapper DLL
function and associated structures in the \Chapter 07\PrinterAccess folder on the CD.

The only problem with the level 2 call is that it provides too much information for some development needs,
which is why Microsoft created the other levels. This level requires a minimum of two data structures. The
security information isn’t required for most output operations and you can ignore it as an output unless you
intend to modify the security of the printer. With this in mind, Listing 7.5 shows the two data structures used
by the example.

Viewing the Second Level of Printer Information

148

Listing 7.5: Data Structures Used for Level 2 GetPrinter() Calls

// This data structure provide all of the device mode
// information.
__gc struct DeviceMode
{
 // There are no size declarations in a managed
 // structure. This entry is 32 chars long.
 //BCHAR dmDeviceName[CCHDEVICENAME];
 Char dmDeviceName[];

 UInt16 dmSpecVersion;
 UInt16 dmDriverVersion;
 UInt16 dmSize;
 UInt16 dmDriverExtra;
 UInt32 dmFields;

 // You can’t include embedded unions and
 // structs within a managed struct. In addition,
 // the POINTL structure is useless because we’re
 // working with printers. The following code
 // translates into four Int16 values.
 // union {
 // struct {
 // Int16 dmOrientation;
 // Int16 dmPaperSize;
 // Int16 dmPaperLength;
 // Int16 dmPaperWidth;
 // };
 // POINTL dmPosition;
 // };
 Int16 dmOrientation;
 Int16 dmPaperSize;
 Int16 dmPaperLength;
 Int16 dmPaperWidth;

 Int16 dmScale;
 Int16 dmCopies;
 Int16 dmDefaultSource;
 Int16 dmPrintQuality;
 Int16 dmColor;
 Int16 dmDuplex;
 Int16 dmYResolution;
 Int16 dmTTOption;
 Int16 dmCollate;

 // This entry is 32 chars long.
 // BCHAR dmFormName[CCHFORMNAME];
 Char dmFormName[];

 UInt16 dmLogPixels;
 UInt32 dmBitsPerPel;
 UInt32 dmPelsWidth;
 UInt32 dmPelsHeight;

 // This was originally a union. It is replaced
 // with a single value.
 //union {
 // UInt32 dmDisplayFlags;
 // UInt32 dmNup;
 //}

Viewing the Second Level of Printer Information

149

 UInt32 dmDisplayFlagsOrdmNup;

 UInt32 dmDisplayFrequency;
 UInt32 dmICMMethod;
 UInt32 dmICMIntent;
 UInt32 dmMediaType;
 UInt32 dmDitherType;
 UInt32 dmReserved1;
 UInt32 dmReserved2;
 UInt32 dmPanningWidth;
 UInt32 dmPanningHeight;
};

// This is the level 2 data structure.
__gc struct PrinterInfo2
{
 String* pServerName;
 String* pPrinterName;
 String* pShareName;
 String* pPortName;
 String* pDriverName;
 String* pComment;
 String* pLocation;
 DeviceMode* pDevMode;
 String* pSepFile;
 String* pPrintProcessor;
 String* pDatatype;
 String* pParameters;
 IntPtr pSecurityDescriptor;
 UInt32 Attributes;
 UInt32 Priority;
 UInt32 DefaultPriority;
 UInt32 StartTime;
 UInt32 UntilTime;
 UInt32 Status;
 UInt32 cJobs;
 UInt32 AveragePPM;
};

As you can see, the data structures are somewhat large and complex. Adding the security descriptor
information would easily double the amount of information you need to handle with this call. It’s interesting
to note that there are many Win32 API calls that fall into this category—translating the data structures
becomes an exercise in typing.

The PrinterInfo2 data structure is the main data structure—it’s the one you submit with the GetPrinter()
function call. This data structure contains essentials such as the name of the printer and simple statistics such
as the name of the separator page file. Except for the pointers to the DeviceMode and security descriptor data
structures, this data structure is relatively straightforward.

The DeviceMode data structure contains detailed information about the printer. It’s also a complex data
structure that needs to be converted into something that .NET will understand. The first problem you run into
is that a BCHAR isn’t described anywhere in the Platform SDK documentation. It appears as part of several
data structure descriptions, but Microsoft never tells you what a BCHAR is, so creating a .NET equivalent
could prove cumbersome. This problem actually occurs more often than you might think, so it’s important to
know how to work around it. If you right click the BCHAR entry while in Visual C++, there’s an option to Go
to Definition in the context menu. Use this option to see how Microsoft has defined the BCHAR and you’ll

Viewing the Second Level of Printer Information

150

see that it’s defined as a WCHAR, which is a documented type. Knowing this information tells you what a
BCHAR is and how to present it as a .NET data type. In this case, I chose a Char array (make sure you use the
.NET type, not the char C/C++ type).

Tip Remember that you can’t define an array size in a managed array. If you see array elements that define a
size in an unmanaged array, you must remove the size declaration.

During the translation of the DEVMODE data structure into a managed format, you’ll be confronted with two
unions and an embedded structure. The second union isn’t much of a problem—all you need to do is translate
it into a single value and code your application to check the flags for the correct value. However, the first
union looks like this:

union {
 struct {
 short dmOrientation;
 short dmPaperSize;
 short dmPaperLength;
 short dmPaperWidth;
 };
 POINTL dmPosition;
};

When confronted with a structure as this, you need to remember the onion−like structure of Windows. Start
from the outside and work your way in. The union enables the code to choose between an unnamed structure
and a POINTL structure. It’s important to remember that we’re working with printers. The POINTL structure
is designed for use with displays, not printers, so you can simply remove it and the associated union (now that
there isn’t any choice to make). The unnamed structure is also useless now because its original purpose was to
keep the four data elements together. You end up with four short variables as shown in Listing 7.5.

At this point, you’ve converted the two essential data structures. Creating the GetPrinterLevel2Data() function
is very similar to the GetPrinterLevel1Data() function described in the previous section. The string and
numeric data transfers work the same as before, so I won’t show the code here. The problem, in this case, is
the BCHAR. You still need to transfer the BCHAR data from the PRINTER_INFO_2 data structure to the
managed data structure. Unfortunately, the messages you receive from Visual C++ when working with this
data type would lead you to believe that BCHAR is actually a BYTE data type, not a WCHAR data type.
Here’s the correct way to transfer the data from the unmanaged to the managed data structure.

// The BCHAR values require special handling.
Local−>pDevMode−>dmDeviceName = new Char[CCHDEVICENAME];
for (int Counter = 0; Counter < CCHDEVICENAME; Counter++)
 Local−>pDevMode−>dmDeviceName[Counter] =
 PrnInfo−>pDevMode−>dmDeviceName[Counter];

Local−>pDevMode−>dmFormName = new Char[CCHFORMNAME];
for (int Counter = 0; Counter < CCHFORMNAME; Counter++)
 Local−>pDevMode−>dmFormName[Counter] =
 PrnInfo−>pDevMode−>dmFormName[Counter];

As you can see, you need to size the char arrays before you use them. The constants that you couldn’t use in
the data structure come in handy for sizing the char arrays outside the data structure. You can also use the
constants as part of the for loop used to transfer data between the two data structures. Using the constants as
shown in the example ensures that any changes that Microsoft makes to the Win32 API won’t affect your
code—your code will automatically adjust. Figure 7.5 shows the output from this example.

Viewing the Second Level of Printer Information

151

Figure 7.5: The GetPrinter() level 2 information tells you everything you need to know about the printer.

Where Do You Go from Here?

This chapter has shown you some basic techniques for accessing your hardware from a .NET application. The
examples in this chapter show various types of hardware access; they’re not all the same. However, it’s
important to remember that this represents the worst−case scenario and you should always look for another
way to perform the hardware access task. For example, you can use existing .NET Framework calls in a new
way, rely on DirectX, or locate a COM component to perform the task. Still, there are times when you’ll need
to perform direct hardware access because no other method for accomplishing the task exists.

One of the first things you should do after reading this chapter is to begin assessing the hardware access needs
for your development environment. If you’re in a larger company, consider putting one or more programmers
on a “hardware access” development team. This group should create wrapper DLLs to ensure you have the
right access to your hardware when building .NET applications.

I consider hardware support one of the more glaring .NET Framework omissions. If you have a unique piece
of hardware and would like to share your .NET access story with me, send me email at JMueller@mwt.net. If
your story will help other developers, I’ll publish it in the .NET Developer eXTRA electronic newsletter that I
write for Pinnacle (see http://www_.freeenewsletters.com/ for details). If you need help with a unique device,
I’ll be more than happy to do what I can to help.

Make sure you visit the Web sites I’ve provided in this chapter. You’ll be surprised at the number of hardware
support sites that are available on the Internet. In some cases, you’ll find just the perfect component or the
right access information to create a DLL of your own. It’s always worth your effort to pursue these leads
because they can help reduce the total cost of creating hardware access for your application when working
with .NET.

Chapter 8 is one of the most important chapters in the book given the current development environment.
Securing your application is no longer a luxury—it’s a requirement in a world where crackers want to exercise

Where Do You Go from Here?

152

control over your application and hopefully create havoc with it. However, good security is helpful for another
reason. A security audit of your application also tends to show places where the application falls short in the
reliability department. Learning to look at security from both a low and a high level can help you make your
application run better, faster, and longer than ever before. In short, Chapter 8 is your gateway to gaining full
access to the security features that Windows provides and could help you write better applications in more
ways than one.

Where Do You Go from Here?

153

Chapter 8: Overcoming Security Issues

Overview

Security is an increasingly important issue for most developers because the developer is being made
responsible for ensuring the safety of data produced by an application. The .NET Framework comes complete
with some good security features that are easier to use than security features in the past. However, the security
emphasized by the .NET Framework is role based—it emphasizes the role an object or user occupies when
requesting data to a system resource. Some development scenarios work well with this new technology; others
don’t. For example, I can’t imagine trying to create a massive Web application using token−based
security—that type of project works best when you can define the roles that the users will fulfill.

Many developers are used to using the token−based security originally implemented in Windows NT. The
token−based security uses a lock and key view of application security. In some cases, this view is actually
easier to use and implement. For example, if you want to check the locks on an individual file or the keys
owned by an individual user, then you’ll need to use the older style of security.

This chapter doesn’t answer the question of which security strategy is best for a given situation. However, it
does provide you with the techniques for accessing both strategies from within a managed application. (We
actually started this discussion with the AccessToken example found in Chapter 3.) We’ll take a quick tour of
the two security strategies and then look at several examples of how you can implement the older token−based
security strategy in a .NET application.

Note This chapter provides a quick overview of the .NET role−based security model for comparison
purposes. It doesn’t provide any complete role−based security examples because you can create
them using standard .NET language calls. You’ll find a few code snippets that demonstrate
differences between token−based and role−based security. You’ll find examples of the standard
.NET language calls in my book Visual C# .NET Developer’s Handbook (Sybex, 2002).

An Overview of Windows Security

The Windows security API is vast and performs many functions within the operating system and the
applications it supports. Unfortunately, understanding the security portion of the Win32 API is about as easy
learning a new language while performing a handstand. It’s not that the concept is so difficult to understand.
The difficulty most developers have is getting the essentials they need from the vast supply of documentation
that Microsoft provides—much of which is written in securityspeak. The most important purpose of this
section of the chapter is to provide you with Win32 API–based security information without all of the mumbo
jumbo.

We’re going to talk about two essential topics in this portion of the chapter. The first is the security API,
which we’ll discuss in detail from a programmer’s perspective. While the user may be faintly aware that
there’s a security API, they’re unlikely to use it or even care that it exists. As a programmer, you need to be
very aware of this part of Windows 2000 and Windows XP and know how to use the various API calls to
make your applications secure.

Tip One security API to consider relies on biometrics, the use of human body parts such as the iris and
fingerprints for identification purposes. The Biometrics API (BAPI) helps programmers embed biometric
technology into applications. A consortium of vendors—including IBM, Compaq, IO Software,

154

Microsoft, Sony, Toshiba, and Novell—originated BAPI. Learn more about BAPI at the IO Software Web
Site (http://www.iosoftware_.com/products/licensing/bapi/). You can download an overview, general
information, technical information, and the BAPI software development kit (SDK). Lest you think that all
of these APIs are vendor specific, you can also find biometrics standards at the Biometrics Consortium
Web site (http://www.biometrics.org/). This site contains helpful information about seminars, standards
progress, and public information such as periodicals. Another interesting place to look for information is
the National Institute of Standards and Technology
(http://www.itl.nist.gov/div895/isis/projects/biometrics−_project.html). The main interests at this site are
the publications, conferences, products, and success stories.

The second important topic is the use of security functions. This section provides an overview of some of the
security−related Win32 API functions you need to know about. As previously mentioned, there are many
security−related functions, so knowing where to start is essential. We’ll discuss some functions that will help
you gain the access you need quickly. Of course, there are many esoteric functions you’ll learn about as you
delve more deeply into the security functions.

Why Worry About Token−Based Security?

Some developers are under the misconception that the .NET Framework is a complete solution or that it will
answer every need. The problem is that the .NET Framework is new technology that extends what developers
used in the past—you can’t count on it to answer many of the old problems you have. In many cases, you’ll
find that a particular level of functionality is completely missing. The examples in this chapter demonstrate
those lost security features.

However, the problem isn’t limited to just missing functionality. The .NET Framework also presents
situations where you could assume one level of functionality when the .NET Framework provides another.
Consider the System.IO.FileStream.Lock() method. In theory, you should use this method to lock a file. In
fact, it will lock the file if no one else is using it at the time.

Unfortunately, the Lock() method uses the LockFile() function found in KERNEL32.DLL, not the more
functional LockFileEx() function. This means you don’t have the option to ask Lock() to wait until it can lock
the file—the method always returns immediately. In addition, you can’t differentiate between a shared and an
exclusive lock. Your only choices to get around this problem are to create a loop and continually poll the file
until it locks or use PInvoke to execute the LockFileEx() function. In short, the .NET Framework is
incomplete and you’ll need to know how to work with the Windows API to overcome those limitations.

A Detailed View of the Windows Security API

The security portion of the Win32 API is large and cumbersome. However, the actual theory behind Windows
security is simple. Every object has a lock and every object requestor has a key. If the requestor’s key fits the
lock, then the requestor gains access to the object and the resources it provides. This is token−based security.
The user’s token is their key to resources on the local machine, the network and intranet, and even the
Internet.

It’s important to understand that the user’s access is limited to the combination of groups and individual rights
that the administrator assigns. However, most of the configuration options available to the administrator affect
Windows as a whole. If you want the administrator to set user−level access for your application, then you

A Detailed View of the Windows Security API

155

must provide a feature to set user access for each object or task your application provides.

User−level access depends on a security ID (SID). When the user first logs into the system, Windows assigns
an access token to the user and places the user’s SID (stored on the domain controller or other security
database) within it. The user object carries both the access token and the SID around for the duration of the
session. An access token also contains both a _Discretionary Access Control List (DACL) and a Security
Access Control List (SACL). The combination of access control lists (ACLs) and SIDs within the access
token is a key that allows the user access to certain system resources.

A key is no good without a lock to open. The lock placed on Windows resources is called a security
descriptor. In essence, a security descriptor tells what rights the user needs to access the resource. If the rights
within the ACLs meet or exceed the rights in the security descriptor, then the lock opens and the resource
becomes available. Figure 8.1 shows the content of the ACL and the security descriptor used for token−based
security. The following sections provide more details about how token−based security actually works. We’ll
use Figure 8.1 as the point of discussion.

Figure 8.1: Token−based security relies on ACLs and security descriptors.

Understanding Access Tokens

There are two ways of looking at a user’s rights under Windows: individual access and group access.
Remember previously that we talked about the user’s SID—the account number that Windows assigns to the
user during login. The access token that holds the SID also contains other structures that identify the groups
the user belongs to and what privileges the user has. Each group entry also has a SID. This SID points to other
structures that tell what rights the group has. To understand what rights the user has, you need to know both
the user’s individual rights and the rights of the groups that the user belongs to. You’d normally use the Local
Users and Groups or the Active Directory Users and Computers Microsoft Management Console (MMC)
snap−in to change the contents of this access token.

Let’s talk about the “privileges” section of the access token shown in Figure 8.1. It begins with a count of the
number of privileges that the user has—the number of special privilege entries in the access token. This
section also contains an array of privilege entries. Each privilege entry contains a locally unique identifier

A Detailed View of the Windows Security API

156

(LUID)—essentially a pointer to the entry object—and an attribute mask. The attribute mask tells what rights
the user has to the object. Group SID entries are essentially the same. They contain a privilege count and an
array of privilege entries.

One of the things that you need to know as part of working with some kinds of objects is that object rights
flow down to the lowest possible node unless overridden by another SID.

For example, if you give a user read and write rights to the \Temp directory on a hard drive, those rights
would also apply to the \Temp\Stuff directory unless you assigned the user specific rights to that directory.
The same holds true for containers. Assigning a user rights to a container object like a Word document gives
the user the right to look at everything within that container, even other files in most cases. It’s important to
track a user’s exact rights to objects on your server through the use of security surveys, because you could
inadvertently give the user more rights than they need to perform a certain task.

Using Access Tokens

Let’s talk briefly about the token calls in the security API, because they are the first stepping−stones you’ll
need to know about. To do anything with a user’s account—even if you want to find out who has access to a
particular workstation—you need to know about tokens. As previously stated, tokens are the central part of
the user side of the security equation. You’ll usually begin a user account access with a call to
OpenProcessToken(). Notice the name of this call—it deals with any kind of a process, user or otherwise. The
purpose of this call is to get a token handle with specific rights attached to it. For example, if you want to
query the user account, you need the TOKEN_QUERY privilege. (Your access token must contain the rights
that you request from the system, which is why an administrator can access a token but other users can’t.) Any
changes to the user’s account require the TOKEN_ADJUST_PRIVILEGES privilege. There are quite a few of
these access rights, so we won’t go through them all here.

Note We’ve already looked at a simple example of how to use access tokens in the AccessToken example
found in Chapter 3. Even though this example is simple, it does explain how security works in reference
to this discussion. You might want to look at the example again to see the relationship between the
theory in this section and the code in the example.

Once you have an access token handle, you need to decide what to do with it. For example, you can change a
user’s privilege to do something by accessing the LUID for the privilege you want to change. All of these
appear in the WINNT.H file with an SE_. For example, the SE_SYSTEM_PROFILE_NAME privilege
enables the application to gather profiling information for the entire system. Some SE values don’t relate to
users (for example, the SE_LOCK_MEMORY_NAME privilege that allows a process to lock system
memory). You get the LUID for a privilege using the LookupPrivilegeValue() call. Now you can combine the
information you’ve gotten so far to change the privilege. In general, you’ll use the AdjustTokenPrivileges()
call to make the required change.

Querying the user’s account (or other token information) is straightforward. You use the
GetTokenInformation() call to retrieve any information you need. This call requires a token class parameter,
which tells Windows the type of information required. For example, you’d use the TokenUser class to learn
about a specific user. You’ll also supply an appropriate structure that Windows can use for storing the
information you request—which differs by token class.

Understanding Security Descriptors

At this point, you have a better idea of how the access token (the key) works. Now let’s look at the security
descriptor (the lock). Figure 8.1 shows that each security descriptor contains five main sections. The following

A Detailed View of the Windows Security API

157

list describes each section.

Flags The header consists of version information and a list of control flags. The flags tell you the descriptor
status. For example, the SE_DACL_PRESENT flag indicates the presence of a DACL. If the DACL is
missing or if it’s NULL, then Windows allows everyone to use the object. Knowing the security descriptor
status can greatly reduce the work you need to perform when determining security descriptor specifics.

Owner SID The owner SID tells who owns the object. This doesn’t have to be an individual user; Windows
allows you to use a group SID here as well. The limiting factor is that the group SID must appear in the token
of the person changing the entry.

Group SID The group SID tells which group owns the object. This entry only contains the main group
responsible for the object and won’t contain a list of all groups with access to the object.

Note Of the two security descriptor SIDs, the owner SID is important only under Windows. The
Macintosh and POSIX security environments use the group SID. According to the Platform
SDK documentation, Windows 2000 and above ignores the contents of the group SID.

SACL This section controls the Windows auditing feature. Every time a user or group accesses an object
when the auditing feature for that object is on, Windows makes an entry in the audit log. There’s more than
one entry in this section in most cases, so Windows stores the information in an array. The SACL is often left
as a NULL value or not included in the security descriptor at all.

DACL This section controls object use. You can assign groups and users to a specific object. There’s more
than one entry in this section in most cases, so Windows stores the information in an array. A DACL can
contain a custom value, a default value, or a NULL value or not appear in the security descriptor at all (this
last option is rare and dangerous). You’ll normally find more objects with default values than any other
DACL type.

Understanding the Security Descriptor Types

There are two types of security descriptors: absolute and self−relative. Absolute security descriptors contain a
copy of each ACL within its structure. Use this type of security descriptor for objects that require special
handling. For example, the root directory of a disk drive often uses an absolute security descriptor.

The self−relative security descriptor only contains a pointer to the SACL and DACL. This type of descriptor
saves memory and reduces the time required to change rights for a group of objects. You’d use it when all
objects in a particular group require the same level of security. For example, you could use this method to
secure all threads within a single application.

Windows requires that you convert self−relative security descriptors to absolute format before you save them
or transfer them to another process. Every descriptor you retrieve using API calls are of the self−relative type.
You can convert a security descriptor from one type to another using the MakeAbsoluteSD() and
MakeSelfRelativeSD() API calls.

A Detailed View of the Windows Security API

158

Understanding ACLs

As previously mentioned, a security descriptor relies on a SACL and a DACL to control the security of an
object. Both of these elements use the same basic ACL data structure, but for different purposes. An ACL
consists of two entry types. The first is a header that lists the number of access control entries (ACEs) in the
ACL. Windows uses this number to determine when it’s reached the end of the ACE list. (There isn’t any of
end−of−structure record or other way to determine the size of each ACE in the structure.) The second entry is
an array of ACEs.

Warning Never directly manipulate the contents of an ACL or SID—Microsoft may change its structure in
future versions of Windows. The Windows API provides functions such as
GetSecurityDescriptorDacl() and SetSecurityDescriptorDacl() to change the contents of these
structures. (Of course, you have to create the security descriptor structure using the
InitializeSecurityDescriptor() function—you’ll learn more about security descriptor construction as
the chapter progresses.) Always use an API call to perform any task with either structure type to
reduce the impact of changes in structure on your application.

An ACE defines the object rights for a single user or group. Every ACE has a header that defines the type,
size, and flags for the ACE. It includes an access mask that defines rights a user or group has to the object.
Finally, there’s an entry for the user or group SID.

There are four main ACE header types. Windows currently uses three out of the four main ACE header types.
The following list tells you about each of the main header types:

General Access This header type appears in the DACL and grants object rights to a user. Use it to add to the
rights a user already has to an object on an instance−by−instance basis. For example, you might want to
prevent the user from changing the system time so that you can keep the machines on the network
synchronized. However, there might be one situation—such as daylight savings time—when the user would
need this right. You could use an access−allowed ACE to allow the user to change the time in this one
instance.

Note Windows divides each of the access header types into two subtypes: allowed and denied. For example,
there’s both an ACCESS_ALLOWED_ACE_TYPE and an ACCESS_DENIED_ACE_TYPE header
type.

Object Access This is a special header type for Windows 2000 and Windows XP. It enables you to assign
specific security to software objects and subobjects. For example, you could use this type of ACE to assign
security to the property of a COM object. To use this type of ACE, you need to obtain or create a globally
unique identifier (GUID) for the object in question.

System Audit This ACE header type works with the SACL. It defines which events to audit for a particular
user or group. There are system audit header types for both general and object use. Only Windows 2000 and
Windows XP systems can use the object−related system audit ACE header type.

System Alarm This is the currently unused ACE type. It enables either the SACL or the DACL to set an
alarm when specific events happen.

Using Security Descriptors

Understanding what a security descriptor is and how the various structures it contains interact is only one part
of the picture. You also need to know how to access and use security descriptors to write a program. Windows

A Detailed View of the Windows Security API

159

doesn’t generalize security descriptors as it does tokens. You can’t use a standard set of calls to access them.

Note Only NTFS provides full security, while VFAT provides it to a lesser degree. You can’t assign or obtain
security descriptors for either HPFS or FAT/FAT32 file systems. The FAT/FAT32 file system doesn’t
provide any extended attribute space, one requirement for adding security. The HPFS file system
provides extended attributes, but they don’t include any security features. Of all the file systems
described, NTFS is the most secure. However, never assume that any file system is completely secure.

Windows includes five classes of security descriptors, each of which uses a different set of descriptor calls to
access the object initially. (You must have the SE_SECURITY_NAME privilege to use any of these
functions.) The five classes of security descriptors are as follows:

Files, Directories, Pipes, and Mail Slots Use GetFileSecurity() and SetFileSecurity().

Processes, Threads, Access Tokens, and Synchronization Objects Use GetKernelObjectSecurity() and
SetKernelObjectSecurity(). All these objects, even access tokens, are kernel objects. As such, they also have
their own security descriptor.

Window Stations, Desktops, Windows, and Menus Use GetUserObjectSecurity() and
SetUserObjectSecurity(). A window station is a combination of keyboard, mouse, and screen. Desktops
contain windows and menus. These four objects inherit rights from each other in the order shown. In other
words, a desktop will inherit the rights of the window station.

System Registry Keys Use RegGetKeySecurity() and RegSetKeySecurity(). Notice that these two calls start
with Reg, just like the other registry−specific calls Windows supports.

Tip You can set some types of permissions using the .NET Framework System.Security.Permissions
namespace. For example, the RegistryPermission class provides access to the registry security values.
However, you won’t gain access to the same level of information using the .NET Framework and you
might find that some functionality is lacking.

Executable Service Objects Use QueryServiceObjectSecurity() and SetServiceObjectSecurity(). For some
strange reason, neither call appears with the other security calls in the Windows API help file. An executable
service is a background task such as the UPS monitoring function.

Once you do gain access to the object, you can perform a variety of tasks using generic API calls. For
example, the GetSecurityDescriptorDACL() retrieves a copy of the DACL from any descriptor type. The
descriptors for all of these objects follow roughly the same format—although the lengths of most of the
components differ. One reason for the differences in size is that each object will contain a different number of
ACEs. The SIDs size differs as well.

The next step to query or modify security descriptor content is to disassemble the components. For example,
you could view the ACEs within a DACL or a SACL using GetACE(). You could also use the owner and
group SIDs for a variety of SID−related calls. In essence, any security descriptor access will always consist of
the same three steps:

Get the descriptor.1.
Remove a specific component.2.
Modify the contents of that component.3.

A Detailed View of the Windows Security API

160

To change the security descriptor, you reverse the process. Use a call like AddACE() to add a new ACE to an
ACL, use SetSecurityDescriptorSACL() to change SACL within a descriptor, and finally, save the descriptor
using a call like SetFileSecurity().

The Importance of Order for Security

Once you know how Windows evaluates the ACEs in the DACL, you’ll discover a few problem
areas—problems that the Windows utilities address automatically. Order is an important consideration when
working with Windows security because Windows uses a very basic method for determining how to evaluate
the security elements. You’ll need to program around these problems to derive the result found in the various
Windows utilities. The SACL has the same problem, but it only affects auditing, so the effect is less severe
from the system security standpoint.

Windows evaluates the ACEs in an ACL in the order in which they appear. At first, this might not seem like a
very big deal. However, it could become a problem in some situations. For example, what if you want to
revoke all of a user’s rights in one area but their list of ACEs includes membership in a group that allows
access to that area? If you place the access−allowed ACE before the access−denied ACE in the list, the user
would get access to the area. The bottom line is that you should place all your access−denied ACEs in the list
first to prevent any potential breach in security.

Also, use care in the ordering of group SIDs. Rights that a user acquires from different groups are cumulative.
This means a user who’s part of two groups, one that has access to a file and another that doesn’t, will have
access to the file if the group granting the right appears first on the list. In addition, if one ACE grants read
rights and another write rights to a file and the user is asking for read and write rights, Windows will grant the
request.

Obviously, you could spend all your time trying to figure out the best arrangement of groups. As the number
of groups and individual rights that a user possesses increases, the potential for an unintended security breach
does as well. That’s why it’s important to create groups carefully and limit a user’s individual rights.

An Overview of the Functions

Now that you have a better idea of how token−based security works, let’s look at some of the functions we’ll
use later in the chapter to create example applications. Table 8.1 contains a list of the various API functions
that you’ll commonly use to change the user’s access token. This list provides only an overview, not a detailed
description, of each API function.

Table 8.1: Common User Access Token Function Overview

Function Name Description

AdjustTokenGroups Allows you to adjust one or more group flags that control group usage
within the access token. For example, you can use this function to
replace the group’s owner.

An Overview of the Functions

161

AdjustTokenPrivileges Allows you to adjust one or more privileges within the access token.
This function enables or disables an existing privilege; you can’t add
or delete privileges from the access token.

AllocateLocallyUniqueId Creates a new LUID. The LUID is unique only for the current
computer session on a particular computer. Unlike a GUID, a LUID is
temporary.

BuildExplicitAccessWithName Creates an EXPLICIT_ACCESS data structure for the named trustee.
This data structure defines the trustee’s ACL information. Use this
data structure with API functions like SetEntriesInAcl() to define a
trustee’s access level to objects. The EXPLICIT_ACCESS data
structure can affect either the SACL or DACL, depending on the
access mode you set for it.

BuildTrusteeWithName Creates a TRUSTEE data structure used to identify a specific trustee.
You supply a trustee name and Windows fills the other data structure
elements with default values. You’ll need to modify the data structure
before using it.

BuildTrusteeWithSid Creates a TRUSTEE data structure that relies on a SID rather than a
trustee name. Windows modifies the default data structure values
appropriately.

CheckTokenMembership Determines whether a SID appears within an access token. This can
help you to determine if a user or process belongs to a particular
group.

CreateRestrictedToken Creates a duplicate of an existing token. The new token will have only
a subset of the rights within the existing token. You can’t use this
function to add new rights to the resulting token.

DuplicateToken Creates a copy of an existing token. Using this technique allows you to
create a new token that varies from an existing token by one or two
privileges.

DuplicateTokenEx Creates a duplicate of a token. This function allows you to create
either a primary or impersonation token. You can set access rights to
the new token as part of the duplication call.

GetAuditedPermissionsFromAcl Returns a list of ACL entries that result in an audit log entry for the
specified trustee. This includes ACL entries that affect the trustee as
well as groups to which the trustee belongs. You get a complete list of
all audit−generating access events, not just those associated with the
trustee. Windows returns the audited access in an ACCESS_MASK
data structure.

GetEffectiveRightsFromAcl Returns a list of ACL entries that list the effective rights for the
specified trustee. Windows returns the effective rights in an
ACCESS_MASK data structure.

GetExplicitEntriesFromAcl Returns an array of EXPLICIT_ACCESS data structures that define
the level of access each ACE within an ACL grants the trustee. The
data structure provides information like the access mode, access rights,
and inheritance setting for each ACE.

GetTokenInformation Returns a data structure containing complete information about the
access token. This includes the token’s user, groups that appear within
the token, the owner of the token, the impersonation level, and
statistics associated with the token.

An Overview of the Functions

162

GetTrusteeForm Returns a constant from one of the TRUSTEE_FORM enumeration
values for a trustee. In most cases, the constants indicate whether the
trustee is a name, SID, or object.

GetTrusteeName Returns the name associated with a name trustee. If the TRUSTEE
data structure that you provide is for a SID or object, Windows returns
a NULL value.

GetTrusteeType Returns a constant from one of the TRUSTEE_TYPE enumeration
values for a trustee. In most cases, the constants indicate whether the
trustee is a user, group, domain, or alias. There are also values to show
deleted or invalid trustees.

IsTokenRestricted Detects whether the access token contains one or more restricting
SIDs.

LookupPrivilegeDisplayName Converts a privilege name listed in WINNT.H to human−readable
form. For example, SE_REMOTE_SHUTDOWN_NAME might
convert to "Force shutdown from a remote system."

LookupPrivilegeName Allows you to convert a privilege name specified by a LUID to one of
the constant forms listed in WINNT.H.

LookupPrivilegeValue Allows you to convert a privilege name as listed in WINNT.H to a
LUID.

OpenProcessToken Opens a token associated with a process (application). As with file
tokens, you need to specify level of access to process the token. For
example, the TOKEN_ALL_ACCESS constant gives you complete
access to the token.

OpenThreadToken Opens a token that’s associated with a thread within an application. As
with a process token, you need to request a specific level of access
when making the request.

SetEntriesInAcl Creates a new ACL by merging new access control or audit control
information into an existing ACL. You can use this function to create
an entirely new ACL using the ACL creation function,
BuildExplicitAccessWithName().

SetThreadToken Used mainly to implement impersonation within a thread. Use this
function to give different rights to a single thread within an
application. This allows the thread to perform tasks that the user may
not have the rights to perform.

SetTokenInformation Sets the information contained within an access token. Before you can
set the information within the token, you have to have the required
access rights. The three data structures associated with this function
allow you to adjust owner, primary group, and DACL information.

Normally, you’ll never work with SIDs directly. The reason is that you can address a user by their login name
and make your code both easier to debug and understand. However, there are certain situations in which
you’ll want to work with SIDs. The most important of these situations is when you’re dealing with common
SIDs like the one for the World, which has a SID of S−1−1−0. The SID for the World always remains the
same, but the name for the World could change from country to country. Always refer to common, universal
SIDs by their SID rather than a common name. With this in mind, you’ll want to know about the SID−related
functions, so you’ll be familiar with them when you want to work with common SIDs. Table 8.2 contains a
list of SID−related functions.

An Overview of the Functions

163

Table 8.2: Common SID−Related Function Overview

Function Name Description

AllocateAndInitializeSid Creates and initializes a SID with up to eight subauthorities.

ConvertSidToStringSid Converts a SID to a string in human−readable format. This format
consists of values in the form S−R−I−SA, where S designates the string
as a SID, R is the revision level, I is the identifier authority value, and
SA is one or more subauthority values. Note that the dashes between
SID values are always part of the SID string.

ConvertStringSidToSid Converts a specially formatted string into a SID.

CopySid Creates a duplicate of an existing SID.

EqualPrefixSid Compares two SID prefixes for equality. A SID prefix is the SID value
minus the last sub−authority value. This test is useful for detecting two
SIDs in the same domain.

EqualSid Compares two SIDs for equality in their entirety.

FreeSid Deallocates the memory used by a SID previously created using the
AllocateAndInitializeSid() function.

GetLengthSid Returns the length of a SID in bytes.

GetSidIdentifierAuthority Returns a pointer to a SID_IDENTIFIER_AUTHORITY data
structure. This data structure contains an array of six bytes that specify
the SID’s top−level authority. Predefined authorities include NULL
(0), local (1), world (2), creator (3), and Windows NT/Windows
2000/Windows XP (5).

GetSidLengthRequired Returns the length of a buffer required to hold a SID structure with a
specified number of sub−authorities.

GetSidSubAuthority Returns the address of a specific sub−authority within a SID structure.
The sub−authority is a relative identifier (RID).

GetSidSubAuthorityCount Returns the address of a field used to hold the number of
sub−authorities within the SID. Use this address to determine the
number of sub−authorities within the SID.

InitializeSid Sets the identifier authority of a SID structure to a known value using
a SID_IDENTIFIER_AUTHORITY data structure. Sub−authority
values aren’t set using this function. Use the
AllocateAndInitializeSid() function to initialize a SID completely.

IsValidSid Determines the validity of a SID structure’s contents. This function
checks the revision number and ensures that the number of
sub−authorities doesn’t exceed the maximum value.

LookupAccountName Retrieves the SID (and accompanying data) for a specific account.
You must supply an account and system name.

LookupAccountSid Retrieves the name and machine associated with a given SID. It also
returns the name of the SID’s first domain.

Security isn’t this one sided. Once Windows determines the rights a user or other object has, it must match
those rights to the access requirements of the system resource. This means working with security descriptors.
A security descriptor is a lock on the object or other system resource. Either the key (access token) fits the
lock or it doesn’t. Windows grants or denies access when the key fits the lock. Table 8.3 is an overview of the

An Overview of the Functions

164

security descriptor API functions.

By now, you should have some idea of how to work within the security portion of the Win32 API. The
divisions I set up within the tables are artificial; they’re for description purposes to make the functions easier
to comprehend and use. In a real−world application, you’ll combine elements of all three tables to create a
complete security picture.

Table 8.3: Security Descriptor Function Overview

Function Name Description

ConvertSecurity−DescriptorToString−SecurityDescriptorConverts a security descriptor to string format.
Flags determine the level of information returned in
the string. A complete string contains the owner
SID, the group SID, a DACL flag list using coded
letters, a SACL flag list using coded letters, and a
series of ACE entries.

ConvertStringSecurity−DescriptorToSecurity−DescriptorConverts a specially formatted string into a security
descriptor.

GetNamedSecurityInfo Returns the security descriptor for the named object
provided as input. Flags determine what kind of
information to retrieve.

GetSecurityDescriptor−Control Returns the security descriptor control information
and revision number for the security descriptor
structure provided as input.

GetSecurityInfo Returns the security descriptor for an object that is
specified using an object handle. Windows provides
flags that determine which security descriptor
entries to retrieve.

SetNamedSecurityInfo Modifies the security descriptor information for an
object specified by name.

SetSecurityDescriptor−Control Modifies the control bits of a security descriptor.
Functions related to this one include
SetSecurityDescriptorDacl, which allows you to set
other control bits of the security descriptor.

SetSecurityInfo Modifies the owner, group, SACL, or DACL within
the security descriptor for an object. Each
information type requires a separate data structure,
which includes flags to tell Windows which
elements to change. A handle and object type
descriptor identifies the object.

Using the Access Control Editor

The Access Control Editor is a COM control that helps you to add a standard interface to your
application—allowing administrators to set application security as needed. These are the same property pages

Using the Access Control Editor

165

that Microsoft uses within Windows 2000 and Windows XP to set security. The Access Control Editor uses
two sets of property pages. The user will normally see the simple property page dialog shown in Figure 8.2.

Figure 8.2: The Access Control Editor is a generally accessible component.

I chose this particular example so that you’d see the dialog in action. The content of the dialog changes to
meet object requirements. The Administrator will normally use the advanced property page shown in Figure
8.3.

As you can see, both property pages allow the administrator to work with the security settings for an
application with relative ease. Notice that the advanced dialog provides complete controls for setting every
security aspect for this particular object. The Permissions tab sets the DACL, the Auditing tab the SACL, and
the Owner tab the owner information. The only missing element is the group information, which isn’t
important at the user level in many cases.

You can easily implement the Access Control Editor in a .NET application by creating the proper interfaces.
The ISecurityInformation interface is the essential component of this implementation. I won’t go into the
programming details in this section. However, it’s important to know that you can add the Access Control
Editor to your applications by adding the appropriate COM interfaces and implementing the required
functions the interfaces describe.

Using the Access Control Editor

166

Figure 8.3: The advanced features of the Access Control Editor provide the administrator with full access
control.

For the Win32 API developer, the Access Control Editor fulfills another purpose. We’ll use this operating
system feature to verify changes made by the sample applications. Security is one of those difficult changes to
verify unless you want to build a lot of test applications. The Access Control Editor is one of many tools that
enable you to check the output of your application, but this particular tool is one of the easiest to use and the
most reliable. In general, you’ll want to use this tool before you use anything else.

It’s also easy to use the Access Control Editor to set up test cases for your applications. For example, you
might want to ensure that your application detects certain types of security changes. (This behavior often
occurs when a virus is at work, so the ability of your application to detect odd changes is important.) The
Access Control Editor enables you to make changes on a test object quickly. You can then test your
application to see how the change affects its operation. Generally, your applications need to at least detect
changes within certain ranges of approved behavior. For example, an application would want to detect files
that have security turned off if the information they contain is sensitive.

Using the Security Configuration Editor

The Microsoft Security Configuration Editor is an administration tool that reduces both security management
and analysis time. Initially you’ll use this tool to configure the operating system security parameters. Once
these parameters are in place, you can use the Security Configuration Editor to schedule periodic tests.

Note Windows NT provides one MMC snap−in for the Security Configuration Editor; it’s called the System
Configuration Manager. You can use the System Configuration Manager to work with the security
database (SDB) and security configuration (INF) files you create using the Security Configuration
Editor. Windows 2000 and Windows XP divide the Security Configuration Editor into two parts. The
Security Configuration and Analysis MMC snap−in helps you configure the security database. The
Security Templates MMC snap−in helps you work with the security configuration files. All of these
operating systems provide similar functionality. Windows 2000 and Windows XP do provide some
advanced features. All screen shots in this section of the chapter depict the Windows XP setup.

The overall goal of the Security Configuration Editor is to provide a single place to manage all of the security
concerns for a network. However, it doesn’t actually replace all of the tools you used in the past—the Security

Using the Security Configuration Editor

167

Configuration Editor augments other security tools. The Security Configuration Editor also provides auditing
tools that Windows has lacked in the past.

One of the unique ideas behind the Security Configuration Editor is that it’s a macro−based tool. You’ll create
a set of instructions for the Security Configuration Editor to perform and then allow it to perform those
instructions in the background. Obviously, this saves a lot of developer time because the developer doesn’t
have to wait for one set of instructions to complete before going to the next set. You can also group tasks,
which saves input time.

At this point, you may wonder why a developer should care about this tool at all. After all, configuring
network security is a network administrator task. That idea used to be true—a network administrator was
responsible for all security on the network. However, as computer networks become more complex and the
technologies used with them more flexible, part of the responsibility for network security has shifted to the
developer. As a developer, you need to know how this tool works so that you can test the applications you
create. This is especially true for token−based applications because the .NET Framework provides nothing in
the way of internal checks for your application. For the Win32 API developer, this is an essential test tool.

Creating a security setup begins when you choose an existing template or create a new one using the Security
Templates MMC snap−in. If you want to use an existing template as a basis for creating a new one, you can
right−click on the desired template and use the Save As command found on the context menu. Microsoft
supplies a variety of templates designed to get you started in creating this security database, as shown in
Figure 8.4.

Figure 8.4: The Security Configuration Editor provides a number of standard templates for creating your
security setup.

Each of the security templates is designed for a different purpose (which is indicated by the name). The one
I’ll use in this section is the compatibility workstation template (compatws), but all of the other templates
work about the same as this one. All of the templates contain the same basic elements shown in Figure 8.5.

Using the Security Configuration Editor

168

Figure 8.5: Each of the security templates contains the same security elements.

As you can see from the figure, each template defines a number of security elements. The following list
describes each of these elements for you:

Account Policies Defines the password, account lockout, and Kerberos policies for the machine. Password
policies include items like the minimum password length and the maximum time the user can use a single
password. The account lockout policy includes the number of times a user can enter the wrong password
without initiating a system lockout. Kerberos policies feature elements like the maximum user ticket lifetime.

Local Policies Defines the audit policy, user rights assignment, and security options. Audit policies
determine the types of data you collect. For example, you could audit each failed user logon attempt. User
rights assignments are of special interest because this policy affects the rights you can assign to a user (the
access token). The security options policy contains the elements that determine how the security system will
react given a set of circumstances. For example, one policy will log a user off when their usage hours expire.

Event Log Defines how the event log stores data and for how long. These policies also determine maximize
event log size and event log viewing rights.

Restricted Groups Defines groups that can’t access the workstation or server at all, or restricts the amount of
access they can obtain.

System Services Displays a list of the system services on the target machine. Double−clicking a service
displays a dialog that allows you to set the policy for that service and adjust its startup mode. Normally, you’ll
leave the icons in this policy alone. However, you can safely change any system service DLLs you create.

Registry Contains all of the major registry hives. Double−clicking a branch displays a dialog you use to set
the security for that branch. In addition, you can choose the method of security inheritance by children of this
branch.

File System Contains protected file system entries. You can add new files to the list or modify exiting
entries. Double−clicking a file system entry displays a dialog you use to set the security level for that file
system member. In addition, you can choose the method of security inheritance by children of this file system
entity (applies only to folders).

Active Directory Objects This entry is only available if you have Active Directory enabled (which means
you must have a domain controller set up). It allows you to edit the security settings for any Active Directory
objects, including users and groups.

Understanding How .NET Role−Based Security Differs

Even though this chapter is about using token−based security, it’s important to realize that the .NET
Framework does provide a substantial set of security classes. The big difference is that the .NET Framework
uses role−based, not token−based, security in most cases. This section helps you understand how role−based
security compares. I’ve provided it as an optional overview of role−based security and you can easily skip the
section if desired.

Most of the security features we’ll discuss in this section appear in the System.Security namespace. However,
it’s important to realize that Microsoft attempted to order the .NET Framework for convenience. Despite the

Understanding How .NET Role−Based Security Differs

169

fact that most security features appear in the security−related namespaces, you’ll find a few in odd places. For
example, if you want to lock a file, you’ll use the System.IO.FileStream.Lock() method. Likewise, if you want
to ensure that your Web pages synchronize properly, you’ll want to use the
System.Web.HttpApplicationState.Lock() method. There’s even a
System.Drawing.Design.ToolboxItem.Lock() method you can use to lock individual properties in a toolbox
item. In short, if Microsoft felt that a developer would have better access to a security method within the
affected object’s class, the method appears in that location.

The .NET Framework provides several levels of security. However, you can easily divide security into
application and role−based security. Application security defends the code elements used to create an
application. In addition, it protects the system from code elements that originate outside the system (such as
code downloaded from a Web site) by assigning such code a lower security level. In short, the code receives a
trust value based on its origin. Role−based security defines the actions a user (or other entity) is allowed to
perform based on their organizational role. This differs from the older individual and group token access
because a user can “change hats” (roles) based on current environmental and access conditions. Together, the
two levels of security enable you to protect applications without worrying too much about low−level
functionality. Of course, these features only work if you’ve already defined the various security elements.

Note Many of the security features that the .NET Framework provides only affect managed code. If
your application uses a combination of managed and unmanaged code, you’ll need to
implement security that works in both arenas, namely the security portion of the Win32 API we
discussed earlier.

Another way to look at .NET security is to consider the method of code implementation. You can
programmatically define a security feature using declarative or imperative syntax. Some security features
require that you use a specific method, while others allow implementation using either method.

Declarative syntax relies on attributes. The attributes can appear at the assembly, class, or member levels and
they can request, demand, or override the security options currently in place. Applications use requests to
change their current security settings. A request can ask for more or less access to objects. Demand and
overrides appear within library code. A demand protects the object from caller access. On the other hand, an
override changes the default security settings. Here’s an example of declarative syntax in action (you can also
find this example in the \Chapter 08\C#\Declarative and \Chapter 08\VB\Declarative folders of the
CD—make sure you change the file location to match your system):

 [System.Security.Permissions.FileIOPermission(SecurityAction.Deny,
 All="E:\\Temp.txt")]
private void btnDeny_Click(object sender, System.EventArgs e)
{
 Stream FS = null; // A test file stream.

 // Try to access the file.
 try
 {
 FS = new FileStream("E:\\Temp.txt",
 FileMode.Open,
 FileAccess.Read);
 }
 catch(SecurityException SE)
 {
 MessageBox.Show("Access Denied\r\n" +
 SE.Message,
 "File IO Error",
 MessageBoxButtons.OK,

Understanding How .NET Role−Based Security Differs

170

 MessageBoxIcon.Error);
 return;
 }

 // Display a success message.
 MessageBox.Show("File is open!",
 "File IO Success",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 // Close the file if opened.
 FS.Close();
}

The btnAllow_Click() will always fail because the FileIOPermission attribute is set to deny all access to the
file. The Assert() or Demand() methods would allow access to the same file (the example uses the Assert()
method). As you can see, the result of this code is that the TEMP.TXT file is protected, even if the user would
normally have access to it.

Imperative syntax relies on security objects. An application creates a security object and then uses the object
to set permissions or perform other tasks. You can use imperative syntax to perform demands and overrides,
but not requests. Here’s an example of imperative syntax in action (you can also find this example in the
\Chapter 08\C#\Imperative and \Chapter 08\VB\Imperative folders on the CD—make sure you change the file
location to match your system):

private void btnDeny_Click(object sender, System.EventArgs e)
{
 FileIOPermission FIOP; // Permission object.
 Stream FS = null; // A test file stream.

 // Create the permission object.
 FIOP = new FileIOPermission(FileIOPermissionAccess.Read,
 "E:\\Temp.txt");

 // Deny access to the resource.
 FIOP.Deny();

 // Try to access the object.
 try
 {
 FS = new FileStream("E:\\Temp.txt",
 FileMode.Open,
 FileAccess.Read);
 }
 catch(SecurityException SE)
 {
 MessageBox.Show("Access Denied\r\n" +
 SE.Message,
 "File IO Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

 // Display a success message.
 MessageBox.Show("File is open!",
 "File IO Success",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

Understanding How .NET Role−Based Security Differs

171

 // Close the file if opened.
 FS.Close();
}

The btnDeny_Click() method will always fail because the imperative security call, FIOP.Deny(), denies
access to the file. Notice how the code initializes the FileIOPermission object before using it. The code
requires a full path to the file in question. As with the declarative syntax, you can use the Assert() or
Demand() methods to allow access to an object.

Looking Up an Account SID Example

Sometimes you know the name of a well−known account, such as Administrators, but you don’t know
anything else about it. The Win32 API provides an answer to this dilemma. You can create a SID for the
account without knowing anything about it and then look up the information for that account. This technique
proves handy for a number of uses. For example, if you know that you want to create a new user that has
starting rights that are the same as those used for a well−known account, you can begin by obtaining
information about the well−known account SID. Listing 8.1 shows the code you’ll need for this example.
You’ll find the source code for this example in the \Chapter 08\C#\LookUpSID and \Chapter
08\VB\LookUpSID folders of the CD. (Note that the list of well−known SIDs shown in Listing 8.1 is
incomplete—you’ll find a complete list on the CD.)

Listing 8.1: Converting a SID to Human−Readable Form

// This function returns a SID for a well−known account.
[DllImport("AdvAPI32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern bool CreateWellKnownSid(
 WELL_KNOWN_SID_TYPE WellKnownSidType,
 IntPtr DomainSid,
 IntPtr pSid,
 ref Int32 cbSid);

// This enumeration contains a list of the well−known SIDs.
public enum WELL_KNOWN_SID_TYPE
{
 WinNullSid = 0,

 // Lots of other well−known SIDs appear in the source code.

 WinAccountRasAndIasServersSid = 50,
};

// This define is normally calculated by a macro, but it’s
// unlikely to change for either Windows 2000 or Windows XP.
public const int SECURITY_MAX_SID_SIZE = 68;

// This function accepts a SID as input and obtains human
// readable data about it.
[DllImport("AdvAPI32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern bool LookupAccountSid(
 String lpSystemName,
 IntPtr Sid,
 StringBuilder Name,
 ref Int32 cbName,

Looking Up an Account SID Example

172

 StringBuilder DomainName,
 ref Int32 cbDomainName,
 ref SID_NAME_USE peUse);

// This enumeration determines the use of the account.
public enum SID_NAME_USE
{
 SidTypeUser = 1,
 SidTypeGroup,
 SidTypeDomain,
 SidTypeAlias,
 SidTypeWellKnownGroup,
 SidTypeDeletedAccount,
 SidTypeInvalid,
 SidTypeUnknown,
 SidTypeComputer
};

private void btnTest_Click(object sender, System.EventArgs e)
{
 Int32 SIDSize; // Size of the returned SID.
 IntPtr GuestSID; // SID of the Guest account.
 int LastError; // Last error produced by an API call.
 Int32 NameSize; // Size of the account name.
 Int32 DomainSize; // Size of the domain name.
 StringBuilder Name; // Account name.
 StringBuilder Domain; // Domain name.
 SID_NAME_USE Use; // Account use.

 // Allocate memory for the SID.
 GuestSID = Marshal.AllocHGlobal(SECURITY_MAX_SID_SIZE);

 // Create the SID.
 SIDSize = SECURITY_MAX_SID_SIZE;
 if (!CreateWellKnownSid((WELL_KNOWN_SID_TYPE)cbSelect.SelectedIndex,
 IntPtr.Zero,
 GuestSID,
 ref SIDSize))
 {
 // Get the last error.
 LastError = Marshal.GetLastWin32Error();

 // Display an error message and exit if not successful.
 MessageBox.Show("Error creating the account SID." +
 "\r\nLast Error: " + LastError.ToString(),
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Free the memory we allocated.
 Marshal.FreeHGlobal(GuestSID);

 // Exit the routine.
 return;
 }

 // Obtain the size of the Name and Domain strings.
 NameSize = 0;
 DomainSize = 0;
 Use = SID_NAME_USE.SidTypeAlias;

Looking Up an Account SID Example

173

 LookupAccountSid(null,
 GuestSID,
 null,
 ref NameSize,
 null,
 ref DomainSize,
 ref Use);

 // Allocate memory for the strings.
 Name = new StringBuilder(NameSize);
 Domain = new StringBuilder(DomainSize);

 // Obtain the SID information.
 if (!LookupAccountSid(null,
 GuestSID,
 Name,
 ref NameSize,
 Domain,
 ref DomainSize,
 ref Use))
 {
 // Get the last error.
 LastError = Marshal.GetLastWin32Error();

 // Display an error message and exit if not successful.
 MessageBox.Show("Error obtaining the account SID data." +
 "\r\nLast Error: " + LastError.ToString(),
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }
 else
 {
 // Display the account information.
 MessageBox.Show("Obtained the SID Account Information" +
 "\r\nName: " + Name.ToString() +
 "\r\nDomain: " + Domain.ToString() +
 "\r\nUse: " + Use.ToString(),
 "Application Output",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }

 // Free the memory we allocated.
 Marshal.FreeHGlobal(GuestSID);
}

Windows provides a wealth of well−known SIDs—predefined SIDs that every machine can use. The
CreateWellKnownSid() function will create a SID for a well−known value such as the World. All you need to
supply is an enumerated SID type, a pointer to a buffer to hold the SID, and the size of the SID buffer. The
domain SID is optional. However, supplying this value will enable you to look up SIDs on other machines.
There are 51 enumerated SID types to choose from and the example application lets you test them all. (Some
of the well−known SIDs might not work on your machine if you don’t have the required support installed.)

The LookupAccountSid() function accepts a SID as input. It doesn’t matter where you get the SID as long as
the SID is valid. If the call to this function fails, you can assume the SID was invalid—even if it’s a
well−known SID. In some cases, this function can tell you which operating system features are installed

Looking Up an Account SID Example

174

because some security accounts are only installed when you install the appropriate operating system feature.
The LookupAccountSid() function returns the name and domain information for the SID along with the SID
usage as indicated by the SID_NAME_USE enumeration.

One of the first tasks the code has to perform is allocating memory for the SID. In many cases, the code could
allocate local memory as shown in the Platform SDK documentation. However, when working with a .NET
application, it’s best to use the Marshal.AllocHGlobal() function. This function returns an IntPtr to the
allocated memory, which you must deallocate later using the Marshal.FreeHGlobal() function. The
SECURITY_MAX_SID_SIZE constant defines the maximum size of the SID. This is yet another instance
where you can convert a Visual C++ macro into a constant with the caveat that Microsoft could change the
size of a SID at some later date. The alternative, in this case, is to write a small wrapper DLL to calculate the
value for you. Using this technique is more expensive in development time, but it does protect you from
future changes.

We’ve used a number of techniques for gaining access to error information. This example uses the
Microsoft−recommended technique of setting the SetLastError argument of the [DllImport] attribute true and
then using the Marshal.GetLastWin32Error() function to return the error number. Note that the .NET
Framework doesn’t provide any means for converting this number into a human−readable form. You still
need to use the Win32 API FormatMessage() function to perform the conversion. (See the section
"Interpreting Error and Result Values" in Chapter 3 for details.)

Once the code obtains the desired SID, it uses the LookupAccountSid() function to determine the SID
information. However, the code requires two calls to the LookupAccountSid() function to perform this task.
The first call returns the size of the strings used to contain the account name and domain information. The
code uses this information to allocate two StringBuilder variables. The second call returns the actual
information. Figure 8.6 shows typical output from this example for the WinAnonymousSid enumerated value.

Figure 8.6: The example application outputs the name, domain, and use for a well−known SID.

Using the GetFileSecurity() Function Example

One of the problems that many developers have noted with the .NET Framework security is a lack of access to
file (and other object) security information. For example, it’s hard to tell who owns a file without using the
Win32 API calls. That’s where the GetFileSecurity() function comes into play. It enables you to retrieve file
security information in the form of a security descriptor. From the theoretical discussion earlier in the chapter,
you know that the security descriptor contains just about every piece of security information that Windows
can supply. The example shown in Listing 8.2 shows how to obtain the owner identification for a file.
However, the same techniques can help you obtain the SACL, DACL, and other security elements. The source
in Listing 8.2 isn’t complete—it contains only the material we haven’t discussed in other areas. See the source
code in the \Chapter 08\C#\FileSecurity and \Chapter 08\VB\FileSecurity folders of the CD for details.

Using the GetFileSecurity() Function Example

175

Listing 8.2: One Technique for Accessing File Security Information

// This function retrieves the security information for a file.
[DllImport("AdvAPI32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern bool GetFileSecurity(
 String lpFileName,
 SECURITY_INFORMATION RequestedInformation,
 IntPtr pSecurityDescriptor,
 Int32 nLength,
 ref Int32 lpnLengthNeeded);

// This enumeration tells what type of information we want to retrieve
// about the file’s security.
public enum SECURITY_INFORMATION : uint
{
 OWNER_SECURITY_INFORMATION = 0x00000001,
 GROUP_SECURITY_INFORMATION = 0x00000002,
 DACL_SECURITY_INFORMATION = 0x00000004,
 SACL_SECURITY_INFORMATION = 0x00000008,
 PROTECTED_DACL_SECURITY_INFORMATION = 0x80000000,
 PROTECTED_SACL_SECURITY_INFORMATION = 0x40000000,
 UNPROTECTED_DACL_SECURITY_INFORMATION = 0x20000000,
 UNPROTECTED_SACL_SECURITY_INFORMATION = 0x10000000
};

// This function retrieves the security descriptor for the
// file owner.
[DllImport("AdvAPI32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern bool GetSecurityDescriptorOwner(
 IntPtr pSecurityDescriptor,
 out IntPtr pOwner,
 ref Boolean lpbOwnerDefaulted);

private void btnTest_Click(object sender, System.EventArgs e)
{
 IntPtr SecurityDescriptor; // File security information.
 Int32 SDSize; // Security descriptor size.
 Int32 SDSizeNeeded; // Required security desc. size.
 int LastError; // Last Win32 API error.
 IntPtr OwnerSID; // SID of the owner account.
 Boolean IsDefault; // Is this a defaulted account?
 Int32 NameSize; // Size of the account name.
 Int32 DomainSize; // Size of the domain name.
 StringBuilder Name; // Account name.
 StringBuilder Domain; // Domain name.
 SID_NAME_USE Use; // Account use.

 // Determine the size of the security descriptor.
 SecurityDescriptor = new IntPtr(0);
 SDSizeNeeded = 0;
 GetFileSecurity(@txtFile.Text,
 SECURITY_INFORMATION.OWNER_SECURITY_INFORMATION,
 SecurityDescriptor,
 0,
 ref SDSizeNeeded);

 // Allocate the memory required for the security descriptor.
 SecurityDescriptor = Marshal.AllocHGlobal(SDSizeNeeded);
 SDSize = SDSizeNeeded;

 // Get the security descriptor.

Using the GetFileSecurity() Function Example

176

 if (!GetFileSecurity(@txtFile.Text,
 SECURITY_INFORMATION.OWNER_SECURITY_INFORMATION,
 SecurityDescriptor,
 SDSize,
 ref SDSizeNeeded))
 {
 // Get the last error.
 LastError = Marshal.GetLastWin32Error();

 // Display an error message and exit if not successful.
 MessageBox.Show("Error obtaining the security descriptor." +
 "\r\nLast Error: " + LastError.ToString(),
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Free the memory we allocated.
 Marshal.FreeHGlobal(SecurityDescriptor);

 // Exit the routine.
 return;
 }

 // Obtain the owner SID for the file.
 IsDefault = false;
 if (!GetSecurityDescriptorOwner(SecurityDescriptor,
 out OwnerSID,
 ref IsDefault))
 {
 // Get the last error.
 LastError = Marshal.GetLastWin32Error();

 // Display an error message and exit if not successful.
 MessageBox.Show("Error obtaining the owner SID." +
 "\r\nLast Error: " + LastError.ToString(),
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Free the memory we allocated.
 Marshal.FreeHGlobal(SecurityDescriptor);

 // Exit the routine.
 return;
 }

// Code to obtain the user information from the SID and some display
// code appears in this area.

}

The GetFileSecurity() function retrieves a security descriptor for the file requested by lpFileName. However,
the function doesn’t retrieve a complete security descriptor. It instead asks you to supply a
SECURITY_INFORMATION enumeration value that chooses one of several pieces of a standard security
descriptor. This means that the call must match the data you want to work with later. Notice that the
SECURITY_INFORMATION enumeration contains all of the elements we discussed in the theoretical
portion of the chapter. You must also provide a buffer pointer and the buffer length. The GetFileSecurity()
function returns the security descriptor that you requested and the amount of buffer space needed to store the

Using the GetFileSecurity() Function Example

177

information.

Remember that we discussed the fact that you should never work with the security descriptor directly, but
instead use the Win32 API–supplied functions. The GetSecurityDescriptorOwner() function will retrieve
owner information from a security descriptor if such information exists. There are also other functions, such
as GetSecurityDescriptorDacl() and GetSecurityDescriptorGroup(), for retrieving other elements of the
security descriptor. The GetSecurityDescriptorOwner() function accepts a security descriptor as input and
returns a SID containing the owner information.

The code actually calls the GetFileSecurity() function twice. The first call is used to determine the size of the
buffer needed to hold the security descriptor. The second call retrieves the security descriptor if the buffer is
large enough to hold the data. Notice that this code uses the Marshal.AllocHGlobal() function to allocate the
buffer for the SecurityDescriptor buffer.

Once the code obtains a security descriptor, it uses the GetSecurityDescriptorOwner() function to retrieve the
SID. Notice that this second function accepts the uninitialized OwnerSID as an out value. If you try to
initialize OwnerSID and send it as we did for the GetFileSecurity() function, the function will fail with an
invalid parameter error. The GetSecurityDescriptorOwner() function points out that you won’t always interact
with the Win32 API functions in the same way. Be prepared to send an initialized variable in one case and an
uninitialized in other cases. At this point, we have a SID and can use the LookupAccountSid() function to
retrieve the applicable information. Figure 8.7 shows the output from this example.

Figure 8.7: The example application will tell you who owns a particular file on the hard drive.

Working with ACEs Example

So far, we’ve looked at examples of how to work with the access token and the security descriptor and the
vagaries of working with specific objects such as files. This example completes the tour of security support
for the Win32 API by looking at the ACEs that make up the SACL and the DACL. Because you’re most
likely to work with the DACL, this example emphasizes access over auditing. However, working with the
ACEs in either structure is about the same. Listing 8.3 shows how you’d access the ACEs for a file. The
listing is incomplete—it doesn’t include the functions used in previous examples. Make sure you check the
source code in the \Chapter 08\C#\GetGroupAccess and \Chapter 08\VB\GetGroupAccess folders of the CD
for details. This source code includes an encapsulated version of the code used to gain access to the security
descriptor in the form of the GetFileSD() function.

Listing 8.3: Gaining Access to the ACEs Means Reading the ACL

public const Int32 ERROR_SUCCESS = 0;

Working with ACEs Example

178

// This function uses the DACL to retrieve an array of explicit
// entries, each of which contains information about individual ACEs
// within the DACL.
[DllImport("AdvAPI32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 GetExplicitEntriesFromAcl(
 IntPtr pacl,
 ref UInt32 pcCountOfExplicitEntries,
 out EXPLICIT_ACCESS []pListOfExplicitEntries);

// This data structure is used to create the explicit entry array.
[StructLayout(LayoutKind.Sequential, Pack=1)]
public struct EXPLICIT_ACCESS
{
 public UInt32 grfAccessPermissions;
 public ACCESS_MODE grfAccessMode;
 public UInt32 grfInheritance;
 public TRUSTEE Trustee;
}

// The ACCESS_MODE enumeration tells what type of ACE entry we’re
// working with.
public enum ACCESS_MODE
{
 NOT_USED_ACCESS = 0,
 GRANT_ACCESS,
 SET_ACCESS,
 DENY_ACCESS,
 REVOKE_ACCESS,
 SET_AUDIT_SUCCESS,
 SET_AUDIT_FAILURE
}

// This structure contains the trustee information for the ACE.
[StructLayout(LayoutKind.Sequential, Pack=1)]
public struct TRUSTEE
{
 public IntPtr pMultipleTrustee;
 public MULTIPLE_TRUSTEE_OPERATION MultipleTrusteeOperation;
 public TRUSTEE_FORM TrusteeForm;
 public TRUSTEE_TYPE TrusteeType;
 public String ptstrName;
}

// The MULTIPLE_TRUSTEE_OPERATION enumeration determines if this
// is a single or a multiple trustee.
public enum MULTIPLE_TRUSTEE_OPERATION
{
 NO_MULTIPLE_TRUSTEE,
 TRUSTEE_IS_IMPERSONATE,
}

// The TRUSTEE_FORM enumeration determines what form the ACE trustee
// takes.
public enum TRUSTEE_FORM
{
 TRUSTEE_IS_SID,
 TRUSTEE_IS_NAME,
 TRUSTEE_BAD_FORM,
 TRUSTEE_IS_OBJECTS_AND_SID,
 TRUSTEE_IS_OBJECTS_AND_NAME
}

Working with ACEs Example

179

// The TRUSTEE_TYPE enumeration determines the type of the trustee.
public enum TRUSTEE_TYPE
{
 TRUSTEE_IS_UNKNOWN,
 TRUSTEE_IS_USER,
 TRUSTEE_IS_GROUP,
 TRUSTEE_IS_DOMAIN,
 TRUSTEE_IS_ALIAS,
 TRUSTEE_IS_WELL_KNOWN_GROUP,
 TRUSTEE_IS_DELETED,
 TRUSTEE_IS_INVALID,
 TRUSTEE_IS_COMPUTER
}

// This function retrieves the DACL from the file’s security
// descriptor.
[DllImport("AdvAPI32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern bool GetSecurityDescriptorDacl(
 IntPtr pSecurityDescriptor,
 ref Boolean lpbDaclPresent,
 out IntPtr pDacl,
 ref Boolean lpbDaclDefaulted);

private void btnTest_Click(object sender, System.EventArgs e)
{
 Boolean DACLPresent; // Is the DACL present?
 Boolean Defaulted; // Is the DACL defaulted?
 IntPtr DACL; // Pointer to the DACL.
 Int32 Result; // Result of a call.
 UInt32 ACECount; // Number of ACEs in DACL.
 EXPLICIT_ACCESS []ACEList; // An array of ACE entries.

 // Obtain a security descriptor containing the DACL.
 if (!GetFileSD(txtFile.Text,
 SECURITY_INFORMATION.DACL_SECURITY_INFORMATION))
 return;

 // Obtain the DACL.
 DACLPresent = false;
 Defaulted = false;
 if (!GetSecurityDescriptorDacl(SecurityDescriptor,
 ref DACLPresent,
 out DACL,
 ref Defaulted))
 {
 // Display an error message.
 MessageBox.Show("Unable to retrieve the DACL.",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Free the memory we allocated.
 Marshal.FreeHGlobal(SecurityDescriptor);

 return;
 }

 // Make sure there is a DACL to display.
 if (!DACLPresent)
 {

Working with ACEs Example

180

 // If not, tell the user there is no DACL.
 MessageBox.Show("There is no DACL.",
 "Processing Report",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 // Free the memory we allocated.
 Marshal.FreeHGlobal(SecurityDescriptor);

 return;
 }

 // Obtain the array of ACEs from the DACL.
 ACECount = 0;
 Result = GetExplicitEntriesFromAcl(DACL,
 ref ACECount,
 out ACEList);

 // Check the results.
 if (Result != ERROR_SUCCESS)
 {
 // Display an error message.
 MessageBox.Show("Unable to retrieve the ACEs.",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Free the memory we allocated.
 Marshal.FreeHGlobal(SecurityDescriptor);

 return;
 }

 // Display the number of ACEs.
 MessageBox.Show("The file has " + ACECount.ToString() +
 " ACEs attached to it.",
 "Number of ACEs",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 // Free the memory we allocated.
 Marshal.FreeHGlobal(SecurityDescriptor);
}

The code begins with a simple define—a reminder that the various Win32 API functions return different
values. In this case, the GetExplicitEntriesFromAcl() function returns a value of ERROR_SUCCESS if
successful or an error value if unsuccessful. You compare the return value with constants to determine the
cause of error.

Notice that the GetExplicitEntriesFromAcl() function is also unique in that it’s the only function so far that
requires an array as input. You don’t define a specific number of array elements—just the fact that the return
value is an array. The call will still work, in this case, whether you provide an IntPtr or a single
EXPLICIT_ACCESS structure value. The difference is that you won’t actually be able to use the return value
if you don’t use an array.

Warning Microsoft acknowledges problems with the various functions used to work with ACEs. For example,
the GetExplicitEntriesFromAcl() function can return the incorrect number of ACEs in some cases.

Working with ACEs Example

181

(See Microsoft Knowledge Base Article Q260307 for details.) The suggested alternatives of working
with the GetAclInformation(), GetAce(), and LookupAccountSid() functions doesn’t really replace
the missing functionality, so you might need to get creative at times in using the Win32 API. Make
sure you check for appropriate Microsoft Knowledge Base articles at
http://search.support.microsoft_.com/search/default.aspx when you run into problems with any of
the Win32 API _functions.

The EXPLICIT_ACCESS structure is relatively complex. It includes both an enumerated value and another
structure, TRUSTEE. The other two values are flags, which means you have to go through the complicated
comparison routine we’ve used in other examples to determine what the flag values mean.

While the TRUSTEE structure looks relatively simple, it can become complex because it also includes
enumerated values that determine what each of the fields in the structure means. For example, the ptstrName
variable has meaning only if the TRUSTEE_FORM enumeration value is TRUSTEE_IS_NAME. Matters are
further complicated by hidden rules. The MULTIPLE_TRUSTEE_OPERATION should always equal
NO_MULTIPLE_TRUSTEE because Microsoft hasn’t implemented this feature yet, or at least its developers
haven’t documented it.

The GetSecurityDescriptorDacl() is another of the functions we talked about earlier for working with the
security descriptor. Remember that you should never change the security descriptor directly because other
applications might try to access it at the same time. This function has an odd return value until you consider
that most parts of the security descriptor are optional. The lpbDaclPresent tells you if the DACL is present in
the security descriptor. The call can succeed even if the security descriptor doesn’t contain a DACL, so you
need to know this additional information.

In general, the btnTest_Click() method doesn’t contain too many surprises. Of course, the first major call is to
GetSecurityDescriptorDacl() because the code has to check the security descriptor created with the
GetFileSD() function for a DACL. If there’s no DACL, the application hasn’t actually experienced an
error—it’s simply found an unprotected file. Consequently, you need to handle the return as a type of
legitimate return value. It simply might not be the return value you were expecting.

The next call is to GetExplicitEntriesFromAcl(). Theoretically, the ACECount variable could contain a 0 on
return, so you should check it. Again, it’s not an actual application error—the DACL could simply be empty.
It’s unlikely that you’ll ever see this happen unless the GetExplicitEntriesFromAcl() function experiences
some type of error (see the previous warning for details).

At this point, we’re ready to test the code. Figure 8.8 shows that the example file contains four ACE entries.
When you run the code, you’ll find that it reports the same number.

Working with ACEs Example

182

Figure 8.8: The example application will output the number of ACEs associated with the test file, as shown
here.

Where Do You Go from Here?

This chapter has provided you with the tools you need to begin using the Win32 API token−based security
calls in your code. The Win32 API is huge in this area, so we didn’t cover every nuance of the security
system. In addition, some tasks such as encrypting and decrypting data are better performed using the .NET
Framework calls, so they aren’t discussed at all. However, you do know how to check the keys and locks used
by the token−based security system, and that’s the basis of most of the calls you’ll need to make given the
good security coverage provided by the .NET Framework.

You now have a decision to make. Which type of security is best for your application? It’s an important
question that you should answer before you write the first line of code for an application. Most security
professionals know (and the crackers agree) that security has to be part of the application design, not added on
at the last moment. This statement means that you need to consider what type of security to use now, not later.
In some cases, you might want to combine the best elements of both role−based and token−based security to
give your application an edge in an increasingly hostile application environment.

It’s helpful to get as many opinions as possible when making security decisions. In many cases, security is a
matter of perception—viewing things from the angle of the person who will attack your applications. The
various URLs in this chapter help you gain the insights needed to write great security for your application.
Make sure you spend some time researching your topic and then trying out some example applications. For
example, it’s often helpful to build a token−based and a role−based version of the same application to see
which type of security is easiest to use, fastest to develop, easiest to understand, and least likely to fail.

If you’re interested in another security example, check out the effective rights example found in the
\Extras\EffectiveRights folder on the CD. This is a short example that shows how to determine the effective
rights of a specific individual or group. The example is helpful in that it shows how you might check the
credentials of a user in any application.

Chapter 9 begins a discussion of the operating system. We’ll begin with an exploration of Windows
XP–specific features you can add to your managed application. As you know from the ShowMessage example

Where Do You Go from Here?

183

in Chapter 3, it’s possible to add a level of Windows XP look and feel to your application without any
programming at all. However, if you want to use the full range of features that Windows XP has to offer, then
you’ll need to write application code. Chapter 9 shows you how to create an application that uses the full
range of features that Windows XP has to offer.

Where Do You Go from Here?

184

Part III: Fixing Advanced Win32 API Problems
Chapter 9: Accessing Windows XP Special Features
Chapter 10: Using Operating System Special Functions
Chapter 11: Accessing the Media Player
Chapter 12: Working with Microsoft Management Console

185

Chapter 9: Accessing Windows XP Special Features

Overview

Windows XP is the latest version of Windows that Microsoft has produced at the time of this writing. It uses
the same core feature set as Windows 2000 but includes a new interface and many compatibility features. Of
course, Windows XP includes the latest security features and updates of all utilities and supports the latest
hardware. The intent behind Windows XP is to provide an operating system that can run older applications in
a new and safer environment. For the most part, Windows XP succeeds in its given task.

Unfortunately, the .NET Framework doesn’t contain any support at all for these new features, making your
job as a developer much harder. On the one hand, you have users who want to use the new features found in
Windows XP; on the other hand, you have management who wants to maximize compatibility and reduce
training costs. In short, you know the features exist and it would be nice to use them, but you can’t access
them easily. This chapter helps by showing which features are easy to implement and will make a large
impact on the user experience, yet keep training costs to a minimum and produce only a small effect on
compatibility.

Tip We’ve already looked at one way to use Windows XP functionality in your application. The example
found in the section entitled “A C LIB Substitute Functions Example” in Chapter 3 shows how to create
an application that has a Windows XP interface without any new coding.

Of course, sometimes a feature is so new that compatibility isn’t a problem—the feature didn’t exist in
previous versions of Windows, so you have nothing to maintain compatibility with. The chapter also looks at
a few examples of new features. These are the features that users are most likely to request in their next
application and management is most likely to approve because they fix existing problems and make the user
more productive. However, even these new features require a measure of care, so we’ll discuss what you gain
and what it will cost. As usual, we’ll discuss everything in light of the example code.

What’s New in Windows XP?

Some industry pundits have stated that Windows XP is only a slight upgrade to Windows 2000. In some
respects, that viewpoint is true. Windows XP does use the same operating system core as Windows 2000 does.
In addition, many of the utilities provide the same functionality as before, and you’ll even find that some new
features are available as separate downloads from Windows Update for Windows 2000. However, this
viewpoint is also shortsighted in many ways. The new interface and compatibility features make Windows XP
a different experience for the user. These new features also provide opportunities for the developer by helping
you differentiate your application.

This section of the chapter will acquaint you with some of the most interesting new features that Window XP
has to offer. In some cases, these new features are also available to Windows 2000 users in the form of a
Windows Update or other Microsoft download. We won’t cover every Windows XP feature because some are
implemented automatically and others are in the esoteric category. For example, we won’t discuss either the
new search engine or the Remote Assistance feature, even though these features are unique to Windows XP.
Windows XP comes in two versions, and we’ll look at both in the sections that follow. You can obtain a list of
Home Edition features at http://www.microsoft.com/windowsxp/home/evaluation/features.asp and
Professional Edition features at http://www.microsoft.com/windowsxp/pro/evaluation/features.asp.

186

Common Features

Some new features are common to both Home Edition and Professional Edition. In some cases, the Home
Edition provides a limited version of the Professional Edition feature, but in many situations, the loss of
functionality relates to corporate use. The following sections provide details about the most important
features.

User Interface Features

Windows XP comes packed with new user interface features. These features help improve user productivity
and reduce training time dramatically. Microsoft’s major emphasis on the interface is to hide features that
user’s don’t need very often but to make commonly used features instantly available. This type of user
interface feature works automatically and you’ll never need to worry about it as part of your application.
However, you do need to consider it as part of the help for your application. Some users will think your
application didn’t install correctly if they don’t see it on the Start menu.

Some of the new user interface features come in the form of conveniences. For example, the new interface
will allow user switching with a minimum of problems. One of the problems with the user switching feature is
that, while it makes it easier to switch between users, fast user switching also keeps the account open once the
user has made the change. Most organizations will view this as a security risk because a novice user could
access a power user’s account given the current setup. Part of the answer is good administration practices, but
you can also make things easier by adding code for Fast User Switching to your application.

Reduced Need for Reboots

From the user’s perspective, rebooting the computer is a waste of time. In some cases, it’s also inconvenient.
For example, rebooting a server means lost time for everyone who relies on the server for data storage and
other services. Windows 2000 began a trend in which Microsoft asked developers to write applications that
require fewer reboots. Windows XP continues this trend. In fact, Microsoft made the reboot issue part of the
logo program for Windows XP. While this particular feature doesn’t require any special operating system
code, it could mean rewriting current applications to comply with Microsoft’s reboot requirements.

Installation

Windows XP contains many features designed to make application installation easier. For example, a user can
use the migration tool to move settings from one machine to another. This was originally an unsupported tool
in the Windows 2000 Resource Kit. The savings in setup time can be substantial, especially if the machine
supports more than one user.

From a developer’s perspective, a Windows XP installation means using Microsoft Installer (MSI) files for
installation. It also means adding new features to the installation, such as the support link found in the Add or
Remove Programs applet. You might also want to add functionality such as on−demand installation to larger
applications. In short, a process that began as copying files from a source directory to a target directory has
become an application in its own right.

Balloon Help

You’ve seen the small balloon help that appears when the mouse hovers over a control or other object. In
addition to the small balloon help, Windows XP also offers a new feature that displays a large balloon. For
example, whenever Windows Update detects an update online, it displays a large balloon that describes the
update and helps the user download it. The balloon help isn’t an application dialog—it’s more of a quick note

Common Features

187

for an application executing in the background. This is such an important feature that you’ll see an example of
it later in the chapter.

Background Intelligent Transfer Service (BITS)

The Background Intelligent Transfer Service (BITS) feature enables an application to transfer data in the
background without any user interaction. Windows has had the ability to transfer files from day one, so this
ability is nothing new. However, BITS transfers can survive disconnects and even reboots. The transfer
continues wherever it left off before the disruption. This is an especially important feature if you have to
support users on the road because connections can be intermittent.

Enhanced Hardware Support

Windows XP provides support for a wealth of modern hardware, including Universal Plug and Play (UPnP).
The feature that makes UPnP unique is that it supports any intelligent device using any network connection.
Theoretically, you could write an application that enables the user’s furnace to send a message to the user
stating that the temperature has dropped below prescribed limits.

Professional Edition Exclusive Features

The Professional Edition of Windows XP costs quite a bit more than the Home Edition because it contains
more features. As previously mentioned, this is the version of Windows you’ll want to use if you use your
machine mainly in a professional setting. For example, most business users will want this edition to gain full
access to important security features.

The following sections discuss unique Professional Edition features. Some of these features already appear in
Windows 2000 Professional, but they don’t appear at all in Windows 9x or in the Home Edition of Windows
XP. Each section tells you when a feature also appears in Windows 2000 Professional.

Scalability

From a developer perspective, Windows XP means having more resources available to run applications. If the
user has Windows XP Professional installed, there’s a possibility of multiple processor support. You could
run threads on a specific processor to help spread the application load evenly.

The scalability features of Windows XP Professional also include the ability to use 4GB of RAM. While
Windows 2000 Professional also supports this feature, this is a new addition for users upgrading from
Windows 9x, which only supports 512MB. The extra memory that Windows XP supports will enable you to
develop more robust applications in the future.

Full NTFS−Based Security

Windows XP supports many of the same file security features that Windows 2000 Professional does. For
example, you have full access to the benefits provided by Kerberos. In addition, you can encrypt individual
files to protect their content. However, this new version also adds some new benefits.

One change you’ll notice is that you can encrypt a file with multiple user accessibility. Windows 2000
Professional only allows single user encryption, which means that you have an option of securing or sharing a
file. With Windows XP, you can encrypt the file and still share it with a select group of users.

Common Features

188

We’ve already discussed many security issues in Chapter 8. However, it’s important to realize that Windows
XP offers far more than previous versions of Windows offered when it comes to security. Imagine creating an
application that provides support for multiple user encryption.

File Management

Some of the new Windows XP file management features will require a little time to get used to if you’ve
worked with other versions of Windows. For example, this version of Windows offers improved handling of
file associations. If you download a file from the Internet and don’t have an application that can access that
file, Windows XP can often provide an application suggestion for you. The applications you create can
include support for advance file management using this Windows XP feature.

The Web Distributed Authoring and Versioning (WebDAV) protocol allows you to publish files or folders to
any Web service that provides the required support. This protocol provides automatic encryption and
decryption to keep your data secure, which also makes the data transfer process transparent.

Networking

Windows XP supports all of the features that you’ll find in Windows 2000. In addition to standard Windows
2000 features, you’ll find a wealth of new features such as wireless support. Microsoft recognizes that most
organizations will have to create hybrid networks that contain a mix of desktop and wireless devices in the
near future.

Another feature is network awareness. This feature allows the operating system to determine when a machine
has changed locations. The operating system and some applications may require configuration changes to
access another domain controller or to access resources on the network when a location change occurs. In the
past, the network administrator would need to make these changes manually. Windows XP tries to make any
required changes automatically.

Note There are some Windows XP features that you don’t have to access using Windows API
calls, but they fall into the “distributed with the .NET Framework” category. One of these
features is GDI+. This updated drawing technology enables you to create graphics easier
and faster. One of the more interesting GDI+ features is the ClearType technology that’s
supposed to make text easier to read on a liquid crystal display (LCD), such as those used
for laptops and personal digital assistants (PDAs). In some cases, people have reported
headaches when using ClearType on a standard monitor because of the way it displays the
fonts. ClearType relies on addressing the LCD at the sub−pixel level to make it appear that
the display has higher resolution than it actually provides. You can access the ClearType
display technology using the ClearTypeGridFit member of the TextRenderingHint
enumeration.

Determining the Operating System Version Example

It’s important to know which version of Windows an application is running on if you plan to use special
operating system features. The GetVersionEx() function is easy enough to understand—it might seem as if
you could use it directly within the .NET Framework application using PInvoke. However, it’s not as easy
you might think to make this function work.

There are several problems to overcome when using the GetVersionEx() function. The first is that the

Professional Edition Exclusive Features

189

GetVersionEx() function can use one of two data structures as input: OSVERSIONINFO and
OSVERSIONINFOEX. The GetVersionEx() function was originally designed to use the OSVERSIONINFO
data structure exclusively. In fact, using the OSVERSIONINFOEX data structure on an older version of
Windows will fail, and it’s one of the tests you need to run to determine which version of Windows the host
system is using.

Note The .NET Framework provides the OperatingSystem class as part of the System namespace. It’s possible
to perform some level of version checking using the methods in this namespace, but it appears that the
OperatingSystem class relies on the GetVersion() Win32 API call instead of the GetVersionEx() Win32
API call to obtain the version information. At the very least, the OperatingSystem class methods use the
OSVERSIONINFO structure instead of the OSVERSIONINFOEX structure, which provides additional
information. While you can use the OperatingSystem class methods in many situations, it’s helpful to
remember that the Win32 API call does provide additional information. The additional information
includes service pack major and minor revision numbers, a suite mask, and product type. Consequently,
you can use the OperatingSystem class methods to determine if you’re using Windows XP or Windows
.NET Server. However, you can’t differentiate between the Home and Professional editions and
Windows .NET Server—all three versions look the same.

The second problem is with the OSVERSIONINFOEX data structure. In the C/C++ header definition of the
data structure, you’ll find the normal DWORD values (among others). However, there’s also a TCHAR array
like the one shown here:

typedef struct _OSVERSIONINFOEX {
 DWORD dwOSVersionInfoSize;
 DWORD dwMajorVersion;
 DWORD dwMinorVersion;
 DWORD dwBuildNumber;
 DWORD dwPlatformId;
 TCHAR szCSDVersion[128];
 WORD wServicePackMajor;
 WORD wServicePackMinor;
 WORD wSuiteMask;
 BYTE wProductType;
 BYTE wReserved;
} OSVERSIONINFOEX, *POSVERSIONINFOEX, *LPOSVERSIONINFOEX;

The problem with this array is that it causes problems in the managed environment. You can define a data
structure that contains a suitable replacement for the TCHAR, but when you try to create an instance of the
data structure, C# will balk. You can only use it in unsafe mode. If you’ll remember from previous
discussions, Visual Basic won’t even touch this data structure because it doesn’t provide the means to work
with unsafe code. Consequently, you’ll need to create a wrapper DLL for this example. Listing 9.1 shows the
wrapper DLL code. You’ll find the Visual C++ source code for this part of the example in the \Chapter
09\OSVersion folder of the CD.

Listing 9.1: The OSVersion Wrapper DLL Performs a Simple Calling Mechanism

// This is the data structure that contains all of the available
// operating system version information.
public __gc struct OSVERSIONINFOEX2
{
public:
 Int32 dwOSVersionInfoSize;
 Int32 dwMajorVersion;
 Int32 dwMinorVersion;

Professional Edition Exclusive Features

190

 Int32 dwBuildNumber;
 Int32 dwPlatformId;
 Char szCSDVersion[];
 Int16 wServicePackMajor;
 Int16 wServicePackMinor;
 Int16 wSuiteMask;
 Byte wProductType;
 Byte wReserved;
};

public __gc class OSVer
{
public:
 static bool GetOSVersion(OSVERSIONINFOEX2** VerInfo)
 {
 OSVERSIONINFOEX OSVer; // Unmanaged version info.
 OSVERSIONINFOEX2* LocalVer; // Local version info.

 // Set some memory aside.
 memset(&OSVer, 0, sizeof(OSVERSIONINFOEX));
 OSVer.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);

 // Get the version information.
 if (!GetVersionEx((OSVERSIONINFO *)&OSVer))
 {
 // Return a failure value if unsuccessful.
 return false;
 }

 // Transfer the data to the input structure.
 LocalVer = new OSVERSIONINFOEX2();
 LocalVer−>dwBuildNumber = OSVer.dwBuildNumber;
 LocalVer−>dwMajorVersion = OSVer.dwMajorVersion;
 LocalVer−>dwMinorVersion = OSVer.dwMinorVersion;
 LocalVer−>dwOSVersionInfoSize = OSVer.dwOSVersionInfoSize;
 LocalVer−>dwPlatformId = OSVer.dwPlatformId;
 LocalVer−>wProductType = OSVer.wProductType;
 LocalVer−>wServicePackMajor = OSVer.wServicePackMajor;
 LocalVer−>wServicePackMinor = OSVer.wServicePackMinor;
 LocalVer−>wSuiteMask = OSVer.wSuiteMask;

 // The char array requires special handling. The Platform
 // SDK documentation gives the char array a specific size
 // in this case.
 LocalVer−>szCSDVersion = new Char[128];
 for (int Counter = 0; Counter < 128; Counter++)
 LocalVer−>szCSDVersion[Counter] = OSVer.szCSDVersion[Counter];

 // Transfer the data to the client.
 *VerInfo = LocalVer;

 return true;
 }
};

As you can see, the OSVERSIONINFOEX2 data structure is a direct match for the OSVERSIONINFOEX
data structure. The only difference is in the use of managed data types. Because Visual C++ works equally
well with managed and unmanaged code, using the OSVERSIONINFOEX2 data structure doesn’t present any
problems.

Professional Edition Exclusive Features

191

The call to GetVersionEx() isn’t difficult. All we do is create an unmanaged OSVERSIONINFOEX data
structure, set memory aside for it, and set the size of the data structure in the OSVer.dwOSVersionInfoSize
variable. Notice the use of a type cast to pass the data structure to GetVersionEx(). If the function fails, then
we return false. Otherwise, the function proceeds to transfer the data to a local copy of the
OSVERSIONINFOEX2 data structure.

Most of the data transfers as you might expect. The only problem area is the TCHAR array. We need to use a
for loop to transfer the data one TCHAR at a time. Of course, you need to size the managed array first.
Because the C/C++ header doesn’t use a constant for this particular array, you can simply use a number to
size it. The final step is to place a pointer to the local version of the data structure in the reference passed by
the application. The wrapper DLL returns true in this case.

The client code is a little more complex because it has to do something with the data contained within the
OSVERSIONINFOEX2 data structure. Listing 9.2 shows the code you’ll need to determine the host operating
system for a client machine. The same type of process could detect a server operating system. You’ll find the
source for this part of the example in the \Chapter 09\C#\CheckVersion and \Chapter 09\VB\CheckVersion
folders of the CD.

Listing 9.2: The Client Application Detects the Operating System Type

// This enumeration determines the platform ID type.
public enum PlatformID
{
 VER_PLATFORM_WIN32s = 0,
 VER_PLATFORM_WIN32_WINDOWS = 1,
 VER_PLATFORM_WIN32_NT = 2
}

// This enumeration determines the main product type.
public enum ProductType
{
 VER_NT_WORKSTATION = 0x0000001,
 VER_NT_DOMAIN_CONTROLLER = 0x0000002,
 VER_NT_SERVER = 0x0000003
}

// This enumeration contains the suite flags.
public enum SuiteMask : uint
{
 VER_SERVER_NT = 0x80000000,
 VER_WORKSTATION_NT = 0x40000000,
 VER_SUITE_SMALLBUSINESS = 0x00000001,
 VER_SUITE_ENTERPRISE = 0x00000002,
 VER_SUITE_BACKOFFICE = 0x00000004,
 VER_SUITE_COMMUNICATIONS = 0x00000008,
 VER_SUITE_TERMINAL = 0x00000010,
 VER_SUITE_SMALLBUSINESS_RESTRICTED = 0x00000020,
 VER_SUITE_EMBEDDEDNT = 0x00000040,
 VER_SUITE_DATACENTER = 0x00000080,
 VER_SUITE_SINGLEUSERTS = 0x00000100,
 VER_SUITE_PERSONAL = 0x00000200,
 VER_SUITE_BLADE = 0x00000400
}

private void btnTest_Click(object sender, System.EventArgs e)
{
 OSVERSIONINFOEX2 OSVerInfo; // Version information.

Professional Edition Exclusive Features

192

 // Initialize the data structure.
 OSVerInfo = new OSVERSIONINFOEX2();

 // Determine the extended version information.
 if (!OSVer.GetOSVersion(ref OSVerInfo))
 {
 // If not successful, the host system is using an older
 // version of Windows.
 MessageBox.Show("Version older than Windows NT 4 SP6.",
 "Version Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 return;
 }

 // See if this is a Windows 9x system.
 if (OSVerInfo.dwPlatformId !=
 (Int32)PlatformID.VER_PLATFORM_WIN32_NT)
 {
 MessageBox.Show("Using Windows 9x.",
 "Version Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 return;
 }

 // Determine if this is a workstation or server.
 if (OSVerInfo.wProductType == (Int32)ProductType.VER_NT_WORKSTATION)
 {
 // Determine if this is Windows XP.
 if ((OSVerInfo.dwMajorVersion == 5) &&
 (OSVerInfo.dwMinorVersion == 1))

 // Determine if this is the Personal Edition.
 if (OSVerInfo.wSuiteMask ==
 (Int32)SuiteMask.VER_SUITE_PERSONAL)
 {
 MessageBox.Show("Using Windows XP Personal.",
 "Version Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 return;
 }

 // Must be the Professional Edition.
 else
 {
 MessageBox.Show("Using Windows XP Professional.",
 "Version Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 return;
 }

 // Check for Windows 2000 Professional.
 if ((OSVerInfo.dwMajorVersion == 5) &&

Professional Edition Exclusive Features

193

 (OSVerInfo.dwMinorVersion == 0))
 {
 MessageBox.Show("Using Windows 2000 Professional.",
 "Version Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 return;
 }

 // Must be Windows NT 4 Workstation.
 else
 {
 MessageBox.Show("Using Windows NT 4 Workstation.",
 "Version Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 return;
 }
 }

 // It’s probably a server, but it’s a good idea to check
 // anyway.
 else if (OSVerInfo.wProductType ==
 (Int32)ProductType.VER_NT_SERVER || OSVerInfo.wProductType
 == (Int32)ProductType.VER_NT_DOMAIN_CONTROLLER)
 {
 MessageBox.Show("Using one of the server versions.",
 "Version Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 return;
 }

 // We can’t determine the Windows version type.
 MessageBox.Show("Unable to determine Windows version.",
 "Version Information Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
}

This example relies on three enumerations. The PlatformID enumeration indicates the major platform: Win32s
running on a Windows 3x system, Win32 running on a Windows 9x system, or a Windows NT/2000/XP
system. The ProductType enumeration determines if the target system is a workstation, server, or domain
controller. The GetVersionEx() function will actually differentiate between a regular server and a domain
controller, which comes in handy for some types of applications. Finally, the SuiteMask enumeration contains
a list of platform subtypes. For example, this is the enumeration that tells you if the host system is a Windows
2000 Small Business server or a Windows XP Personal system. You can even use this enumeration to detect
embedded systems.

The client code begins by creating an OSVERSIONINFOEX2 data structure and instantiating it. It calls the
GetOSVersion() function found in the wrapper DLL. A call failure doesn’t indicate that the call actually
failed—it indicates that the system is using a version of Windows older than Windows NT 4 Service Pack 6.

Professional Edition Exclusive Features

194

The code proceeds by using a series of checks to determine the platform type. For example, if the
OSVerInfo.dwPlatformId field doesn’t contain the platform ID for a Windows NT system, then we know that
the system is using Windows 9x or Windows 3x. Because the .NET Framework won’t run on Windows 3x, we
know for certain that it’s a Windows 9x system.

The next series of checks begins by verifying that the host system is a workstation rather than a server. The
code then uses the version number to detect the specific version of Windows. For example, Windows XP is
version 5.1, while Windows 2000 is version 5.0. You can find a complete list of version numbers in the
Platform SDK documentation. The remaining check for a Windows XP system is to differentiate between the
Home Edition and the Professional Edition. All the code needs to do is check the OSVerInfo.wSuiteMask field
because a Home Edition system will have the VER_SUITE_PERSONAL value. The checks continue through
the series of systems that I decided to check for this example.

Working with Theme Support Example

Themes are one of the more innovation additions to Windows XP. While Windows XP does support the older
themes used in previous versions of Windows, it also provides support for a new class of themes. This new
theme class enables the user to configure the operating system environment in ways not possible in the past.
This technology is loosely based on the “skins” technology used for Microsoft utilities such as the Media
Player, but there are differences that make the two technologies incompatible. The main theme files reside in
the \WINDOWS\ Resources\Themes folder, but each user has at least one custom theme as well. The themes
define the appearance of operating system elements such as push buttons and windows. Support isn’t limited
to controls but applies equally to all visual elements.

You learned in Chapter 3 that adding a manifest to your application forces Windows to draw the standard
controls using the Windows XP themes. However, the manifest doesn’t affect owner−drawn controls. If you
want owner−drawn display elements to have a Windows XP theme appearance, then you need to draw them
manually using special functions such as DrawThemeBackground() and DrawThemeText().

Of course, the first step in using custom operating system function calls is to determine the version of the
operating system as we did in the previous example. The example in this section assumes you’ve already
taken that step and want to begin using the theme support that Windows XP provides. Listing 9.3 shows the
code for this example. You’ll find the source code in the \Chapter 09\C#\WinTheme and \Chapter
09\VB\WinTheme folders of the CD.

Listing 9.3: Using Windows XP Theme Support in an Application

// This function verifies that theme support is available.
[DllImport("UXTheme.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern bool IsThemeActive();

// This function opens a handle to the theme support. We need a
// handle in order to access theme features.
[DllImport("UXTheme.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern IntPtr OpenThemeData(IntPtr hWnd,
 String pszClassList);

// Use this function to close the handle to the theme support
// when you finish using it.
[DllImport("UXTheme.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 CloseThemeData(IntPtr hTheme);

Working with Theme Support Example

195

// The purpose of this function is to retrieve a device context;
// essentially a drawing area for the application.
[DllImport("User32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern IntPtr GetDC(IntPtr hWnd);

// Use this function to release the device context.
[DllImport("User32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 ReleaseDC(IntPtr hWnd, IntPtr hDC);

// The GetClientRect() function obtains the current client drawing
// area on screen.
[DllImport("User32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern bool GetClientRect(IntPtr hWnd, ref RECT lpRect);

// The RECT structure is used for many drawing functions.
public struct RECT
{
 public Int32 left;
 public Int32 top;
 public Int32 right;
 public Int32 bottom;
}

// This is the function that enables the application to draw user
// controls using the current theme. You need a minimum of two forms
// of this function. The first requires use of a clipping rectangle,
// while the second doesn’t.
[DllImport("UXTheme.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DrawThemeBackground(IntPtr hTheme,
 IntPtr hDC,
 Int32 iPartId,
 Int32 iStateId,
 ref RECT pRect,
 ref RECT pClipRect);

[DllImport("UXTheme.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DrawThemeBackground(IntPtr hTheme,
 IntPtr hDC,
 Int32 iPartId,
 Int32 iStateId,
 ref RECT pRect,
 IntPtr NoClipRect);

// This function enables the application to draw theme specific text.
[DllImport("UXTheme.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DrawThemeText (IntPtr hTheme,
 IntPtr hDC,
 Int32 iPartId,
 Int32 iStateId,
 String pszText,
 Int32 iCharCount,
 UInt32 dwTextFlags,
 UInt32 dwTextFlags2,
 ref RECT pRect);

// This is an enumeration for the dwTextFlags argument.
public enum TextFlags
{
 DT_TOP = 0x00000000,
 DT_LEFT = 0x00000000,
 DT_CENTER = 0x00000001,

Working with Theme Support Example

196

 DT_RIGHT = 0x00000002,
 DT_VCENTER = 0x00000004,
 DT_BOTTOM = 0x00000008,
 DT_WORDBREAK = 0x00000010,
 DT_SINGLELINE = 0x00000020,
 DT_EXPANDTABS = 0x00000040,
 DT_TABSTOP = 0x00000080,
 DT_NOCLIP = 0x00000100,
 DT_EXTERNALLEADING = 0x00000200,
 DT_CALCRECT = 0x00000400,
 DT_NOPREFIX = 0x00000800,

 // This next value is undocumented and might not work.
 //DT_INTERNAL = 0x00001000,

 DT_EDITCONTROL = 0x00002000,
 DT_PATH_ELLIPSIS = 0x00004000,
 DT_END_ELLIPSIS = 0x00008000,
 DT_MODIFYSTRING = 0x00010000,
 DT_RTLREADING = 0x00020000,
 DT_WORD_ELLIPSIS = 0x00040000,
 DT_NOFULLWIDTHCHARBREAK = 0x00080000,
 DT_HIDEPREFIX = 0x00100000,
 DT_PREFIXONLY = 0x00200000

// This is the only value for the dwTextFlags2 argument.
public const int DTT_GRAYED = 0x1;

// This function enables the application to draw icons.
[DllImport("UXTheme.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DrawThemeIcon(IntPtr hTheme,
 IntPtr hDC,
 Int32 iPartId,
 Int32 iStateId,
 ref RECT pRect,
 int himl,
 Int32 iImageIndex);

// Defines used for the parts and status.
public const int BP_PUSHBUTTON = 1;
public const int PBS_NORMAL = 1;

private void btnTest_Click(object sender, System.EventArgs e)
{
 IntPtr hTheme; // Handle to the theme support.
 Int32 Result; // Result of an operation.
 IntPtr hDC; // Handle to the device context.
 RECT Rect; // Client drawing area.
 RECT DrwRect; // Drawing area within the client area.

 // Verify the theme is active.
 if (!IsThemeActive())
 {
 // Display an error message.
 MessageBox.Show("Theme support isn’t active!",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 return;

Working with Theme Support Example

197

 }

 // Obtain a handle to the theme support.
 hTheme = OpenThemeData(lblTestArea.Handle, "Button");

 // Check for errors.
 if (hTheme == IntPtr.Zero)
 {
 // Display an error message.
 MessageBox.Show("Couldn’t open theme data!",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 return;
 }

 // Obtain a device context for the current application.
 hDC = GetDC(lblTestArea.Handle);

 // Check for errors.
 if (hDC == IntPtr.Zero)
 {
 // Display an error message.
 MessageBox.Show("Couldn’t obtain device context!",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Close the theme handle.
 CloseThemeData(hTheme);

 return;
 }

 // Determine the client drawing area.
 Rect = new RECT();
 if (!GetClientRect(lblTestArea.Handle, ref Rect))
 {
 // Display an error message.
 MessageBox.Show("Couldn’t obtain client drawing area!",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 return;
 }

 // Draw the theme background and validate the results.
 Result = DrawThemeBackground(hTheme,
 hDC,
 BP_PUSHBUTTON,
 PBS_NORMAL,
 ref Rect,
 IntPtr.Zero);
 if (Result != S_OK)
 MessageBox.Show("Couldn’t draw the theme background!",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

Working with Theme Support Example

198

 // Create a drawing area 5 pixels from the top, left, and right.
 DrwRect = Rect;
 DrwRect.top += 5;
 DrwRect.left += 5;
 DrwRect.right −= 5;

 // Draw the theme text for the window.
 Result = DrawThemeText(hTheme,
 hDC,
 BP_PUSHBUTTON,
 PBS_NORMAL,
 "Left",
 4,
 0,
 0,
 ref DrwRect);

 DrwRect.top += 15;
 Result = DrawThemeText(hTheme,
 hDC,
 BP_PUSHBUTTON,
 PBS_NORMAL,
 "Centered",
 8,
 (UInt32)TextFlags.DT_CENTER,
 0,
 ref DrwRect);

 DrwRect.top += 15;
 Result = DrawThemeText(hTheme,
 hDC,
 BP_PUSHBUTTON,
 PBS_NORMAL,
 "Right",
 5,
 (UInt32)TextFlags.DT_RIGHT,
 DTT_GRAYED,
 ref DrwRect);

 // Draw the theme icon for the window.
 DrwRect.top += 15;
 DrwRect.bottom = DrwRect.top + 32;
 DrwRect.right = DrwRect.left + 32;
 Result = DrawThemeIcon(hTheme,
 hDC,
 BP_PUSHBUTTON,
 PBS_NORMAL,
 ref DrwRect,
 ilDraw.hImageList,
 cbSelect.SelectedIndex);

 // Release the device context when finished drawing.
 Result = ReleaseDC(lblTestArea.Handle, hDC);

 // Close the theme handle when we’re finished.
 Result = CloseThemeData(hTheme);
}

If you’re thinking that this is a lot of code, consider the fact that this is a simple example—the code only gets

Working with Theme Support Example

199

longer as you add features. However, the code does show the major function declarations you’ll need and a
few of the enumerations for a full implementation. As you can see, all of the theme−specific functions reside
in the UXTheme.DLL file and this file only appears on machines with Windows XP installed.

Notice that most of the function calls return either a handle to a resource or a result value. The result value is
always equal to S_OK (defined in the code, but not shown in the listing) except for the ReleaseDC() function.
The ReleaseDC() function returns 0 if Windows couldn’t release the device context for some reason and 1 if
the function succeeds. The application won’t actually check for the ReleaseDC() return code because it would
be unusual for the function to fail and there isn’t any way to recover if it does.

This example relies on a combination of old and new functions. For example, the GetClientRect() appears in
every version of Windows currently in existence. This function returns the drawing area of the selected object.
It uses a RECT structure as shown in the code to return the results. Many Win32 API functions rely on
GetClientRect(), so this is one of the functions you should consider placing in a DLL for future use.

Most of the theme drawing functions rely on a part and state identifier. The only problem is that the part and
state information is calculated as part of a complex macro located in the tmschema.h header file and that the
Platform SDK documentation doesn’t tell you that you need this header, even when working with Visual C++.
As a result, developers (even Visual C++ developers) need to learn about this header by trial and error. The
tmschema.h header file won’t tell you anything about the enumerated values, so you’ll need to build a Visual
C++ wrapper DLL to handle the enumerated values, create a managed enumeration, or rely on constants as we
have in the example.

Tip Drawing the theme background means knowing which controls you want to draw and how you want them
drawn. The Microsoft documentation uses the term parts to refer to controls used within a theme
environment. Themes support a number of parts, so it’s important to be specific when you call the
DrawThemeBackground() function. With this in mind, Microsoft has provided an entire Win32 API help
subject on the theme parts and the state of those parts. You’ll find this write−up at
ms−help://MS.VSCC/MS.MSDNVS/
shellcc/platform/CommCtls/UserEx/reference/topics/PartsAndStates.htm.

The DrawThemeText() function also relies on two enumerations that determine how it draws text on screen.
The Visual C++ header file contains all of the values shown for the TextFlags enumeration. However, one of
the values in the header file isn’t listed in the Platform SDK documentation. That’s why DT_INTERNAL is
commented out in the example code. This is a use−at−your−own−risk value.

The example code begins by checking for active theme support. Even though Windows XP supports themes,
the user can turn the support off. You must use standard drawing technique if the user has turned theme
support off. Microsoft recommends that you only make this check once when the application starts.
Afterward, you can monitor the WM_THEMECHANGED message. Monitoring this message also tells you
when to update the display if the user changes themes during the session. We discussed various messaging
techniques in Chapter 4.

Once the code checks for theme support, it needs to open two handles. The first handle is for the theme
support. You can’t use the theme functions without a handle to the theme support. The second handle is for
the device context. Think of the device context as a virtual drawing area for the selected object. Because
Windows has to coordinate the drawing commands for every object on the system, it requires the use of a
device context so that one drawing doesn’t overwrite another in the actual display area.

Notice that the part argument is set to BP_PUSHBUTTON for all of the drawing calls. This means that all of
the drawing will take place using the pushbutton characteristics in the theme. In addition, the pushbutton is in

Working with Theme Support Example

200

the PBS_NORMAL state. A theme normally has entries for several part states. The state that you select will
affect the appearance of the application output.

At this point, the application is ready to draw something on screen. The example includes three
DrawThemeText() calls so that you can see the effects of various flags. The flags affect the appearance of the
text as well as its placement within the drawing area.

The DrawThemeIcon() function requires some unusual input. You must supply the theme and device context
flags as usual, along with the part and state identifications. However, notice that the DrawThemeIcon()
function also requires an image list and an image index within the image list. Unfortunately, you can’t use the
managed ImageList control that comes with Visual Studio .NET because the DrawThemeIcon() function
won’t know what to do with the code. You must use the Visual Basic ImageList control instead by selecting it
in the Customize Toolbox dialog. Figure 9.1 shows this dialog box and the option you’ll need to check.

Figure 9.1: he example uses a COM version of the ImageList control in place of the managed version.

Note The icons for this example were created using IconForge. While you could use any good drawing tool to
create icons, IconForge has features that make it one of the better options. We’ll discuss IconForge in
detail in the section “Using IconForge” in Chapter 11.

Configuring this control is relatively easy. All you need to do is right−click the control and choose Properties
from the context menu. Select the Images tab and you’ll see buttons for adding and removing images. Figure
9.2 shows a typical example of the Properties dialog box for this control. Notice that the index for the control
is 1 based instead of 0 based. You’ll still need to access the images using a 0 reference.

Figure 9.2: You’ll add images to the ImageList control using the Properties dialog box.

Working with Theme Support Example

201

Upon completion of drawing, the code releases both the device context and the theme handles. This is an
essential step. Failure to release both handles will result in an application memory and resource leak. In
addition, you’ll find that the system will experience a slight performance hit because of the open handles.
Windows normally requires a reboot to fix this problem. Figure 9.3 shows the output from this application.

Figure 9.3: The example application draws a background, some text, and an icon of your choice.

Balloon Help Example

Balloon ToolTips are relatively new. They’re the ToolTips that you see when Windows wants you to visit the
Windows Update site or the modem connects or when Windows needs to provide some other informational
message. Balloon ToolTips have rounded edges and accommodate a little more text than a standard ToolTip.
The .NET Framework provides good support for most types of ToolTips. However, if you want to create a
balloon ToolTip, the Win32 API is the only option. The reason you need to use the Win32 API is that the
ToolTip class is sealed—you can’t modify it in any way. Listing 9.4 shows the code you’ll need to create a
balloon ToolTip.

Listing 9.4: One Method for Creating a Balloon ToolTip

// This function initializes the common controls for
// the current application.
[DllImport("ComCtl32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Boolean InitCommonControlsEx(
 ref INITCOMMONCONTROLSEX lpInitCtrls);

// This structure contains the common control initialization
// information.
public struct INITCOMMONCONTROLSEX
{
 public Int32 dwSize;
 public Int32 dwICC;
}

// This constant defines the common controls we want to load.
public const int ICC_WIN95_CLASSES = 0x000000FF;

Balloon Help Example

202

// This function creates a new window. It’s a general function,
// but we’re using it in a very specific way to create a special
// type of ToolTip window.
[DllImport("User32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern IntPtr CreateWindowEx(UInt32 dwExStyle,
 String lpClassName,
 String lpWindowName,
 UInt32 dwStyle,
 UInt32 x,
 UInt32 y,
 UInt32 nWidth,
 UInt32 nHeight,
 IntPtr hWndParent,
 IntPtr hMenu,
 IntPtr hInstance,
 IntPtr lpParam);

// We’ll need these defines to set the window up for use.
public const int WS_EX_TOPMOST = 0x00000008;
public const String TOOLTIPS_CLASS = "tooltips_class32";
public const UInt32 WS_POPUP = 0x80000000;
public const UInt32 TTS_ALWAYSTIP = 0x01;
public const UInt32 TTS_NOPREFIX = 0x02;
public const UInt32 TTS_BALLOON = 0x40;
public const UInt32 CW_USEDEFAULT = 0x80000000;

// This function sets the ToolTip position in relation to the
// application window.
[DllImport("User32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Boolean SetWindowPos(IntPtr hWnd,
 IntPtr hWndInsertAfter,
 Int32 X,
 Int32 Y,
 Int32 cx,
 Int32 cy,
 UInt32 uFlags);

// These defines help set the window position.
public IntPtr HWND_TOPMOST = new IntPtr(−1);
public const UInt32 SWP_NOSIZE = 0x0001;
public const UInt32 SWP_NOMOVE = 0x0002;
public const UInt32 SWP_NOACTIVATE = 0x0010;

// This data structure defines elements of the ToolTip.
public struct TOOLINFO
{
 public Int32 cbSize;
 public UInt32 uFlags;
 public IntPtr hwnd;
 public UInt32 uId;
 public RECT rect;
 public IntPtr hinst;
 public String lpszText;
 public Int32 lParam;
}

// These constants are used with the TOOLINFO data structure.
public const UInt32 TTF_SUBCLASS = 0x0010;
public const UInt32 TTF_TRANSPARENT = 0x0100;
public const UInt32 TTF_CENTERTIP = 0x0002;

Balloon Help Example

203

// This constant tells the application which message it’s
// recieving.
public const Int32 TTM_ADDTOOL = 0x0400 + 50;

private void btnTest_Click(object sender, System.EventArgs e)
{
 INITCOMMONCONTROLSEX ComCtrls; // Common control data.
 IntPtr WinHandle; // Handle to the ToolTip window.
 RECT Rect; // Client drawing area.
 TOOLINFO TI; // ToolTip information.
 IntPtr TIAddr; // Address of the ToolTip info.
 Assembly Asm; // Executing assembly.
 IntPtr hInstance; // Handle to the assembly instance.
 Int32 Result; // Result of the operation.

 // Initialize the common controls.
 ComCtrls = new INITCOMMONCONTROLSEX();
 ComCtrls.dwSize = Marshal.SizeOf(ComCtrls);
 ComCtrls.dwICC = ICC_WIN95_CLASSES;
 if (!InitCommonControlsEx(ref ComCtrls))
 {
 // Show an error message.
 MessageBox.Show("Can’t initialize environment.",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

 // Create an instance handle.
 Asm = Assembly.GetExecutingAssembly();
 hInstance = Marshal.GetHINSTANCE(Asm.GetModules()[0]);

 // Create the ToolTip window.
 WinHandle = CreateWindowEx(
 WS_EX_TOPMOST,
 TOOLTIPS_CLASS,
 "Balloon Help Message",
 WS_POPUP | TTS_NOPREFIX | TTS_BALLOON,
 0,
 0,
 0,
 0,
 IntPtr.Zero,
 IntPtr.Zero,
 hInstance,
 IntPtr.Zero);

 // Set the window position on screen.
 SetWindowPos(WinHandle,
 HWND_TOPMOST,
 0,
 0,
 0,
 0,
 SWP_NOSIZE | SWP_NOMOVE | SWP_NOACTIVATE);

 // Determine the client drawing area.
 Rect = new RECT();
 GetClientRect(this.Handle, ref Rect);

Balloon Help Example

204

 // Build a toolinfo data structure.
 TI = new TOOLINFO();
 TI.cbSize = Marshal.SizeOf(TI);
 TI.uFlags = TTF_CENTERTIP | TTF_TRANSPARENT;
 TI.hwnd = this.Handle;
 TI.lpszText = "This is a sample tooltip.";
 TI.hinst = IntPtr.Zero;
 TI.rect = Rect;

 // Create a pointer to the ToolTip information.
 TIAddr = Marshal.AllocHGlobal(Marshal.SizeOf(TI));
 Marshal.StructureToPtr(TI, TIAddr, true);

 // Send the ToolTip message.
 Result = SendMessage(WinHandle, TTM_ADDTOOL, 0, TIAddr.ToInt32());
 if (!Convert.ToBoolean(Result))
 MessageBox.Show("Error sending the tooltip message.",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Make sure you free the unmanaged memory.
 Marshal.FreeHGlobal(TIAddr);
}

The InitCommonControlsEx() function is somewhat unique in that you can normally assume that the controls
you need are available. When working with ToolTips, you need to ensure that the required controls from
ComCtl32.DLL are loaded into the current environment. Because .NET applications use managed controls for
the most part, you can’t assume that the unmanaged controls are available.

A ToolTip is essentially a special−purpose window. Microsoft provides examples that use both the
CreateWindow() and the CreateWindowEx() functions. The CreateWindowEx() function worked more
reliably during testing, so that’s what the examples uses. Anyone who’s worked with CreateWindowEx()
knows there are many classes and other features you can add to a window creation call. However, the example
is only interesting in ToolTip creation, so it skips the usual enumerations for the sake of simplicity. The
constants used in the example are the minimum you can use to create the window.

The application also relies on calls to other functions that we’ll discuss as part of the application code (some
of which doesn’t appear in Listing 9.4). The last item of interest in the declaration area of the example is the
TOOLINFO structure. This structure defines the functionality of the ToolTip. It’s also the piece of
information sent to the ToolTip window as a message. We’ll see how this works during the code discussion.

The code begins by initializing the common controls. If the application can’t load the controls for some
reason, it must exit. There’s little point in creating the window if the required controls are unavailable.

The next step is to create an instance handle. You can create the instance handle in a number of ways, but the
example uses the two−step process shown. First, you gain access to the assembly using the
GetExecutingAssembly() function. The assembly variable, Asm, contains a list of all of the modules within
the assembly. The second step is to access the module and use the module with the GetHINSTANCE()
method. The output is the instance handle needed for the rest of the example.

Creating the window comes next. The essential elements, in this case, are specifying TOOLTIPS_CLASS,
one or more of the TTS_ options, and the instance handle. The example code shows the options needed to

Balloon Help Example

205

create a balloon ToolTip. You need other options to create standard and tracking ToolTips. The "Balloon Help
Message" string is only supplied for the example—you don’t normally supply a window title because
Windows won’t display it. We’ll use Spy++ to see how Windows works with ToolTip windows.

Setting the window position is a good idea, but not essential. The example code sets the position so you can
see the message traffic between Windows and the ToolTip window. In addition, setting the position does
make it easier to find the ToolTip on screen.

The window is ready to go, but we can’t display it yet because the window doesn’t have the information
needed to display itself. The code creates this information in the form of a TOOLINFO structure. One of the
structure entries is a RECT structure that contains the position of the window. The example allows the
ToolTip to use as much of the client area as needed for information. The other TOOLINFO structure entries
are typical for a balloon ToolTip.

Finally, the code sends a message to the ToolTip window. This message contains the information required to
display the window on screen. We can’t pass a managed structure to the window because it’s essentially
operating in an unmanaged environment. The application uses AllocHGlobal() to allocate unmanaged
memory and then places the contents of the data structure into that memory using the StructureToPtr() call.
One last note here is to ensure that you release any memory used for the unmanaged structure data.

Spy++ can tell you a lot about this particular application. Begin with the Windows display. Locate the Balloon
Help Message window. Figure 9.4 shows a typical example of what you’ll see. Notice that the window relies
on the tooltips_class32 class for support.

Figure 9.4: Use Spy++ to discover the inner workings of the example application.

Right−click the window entry and choose Properties. The Styles tab will show the TTS_BALLOON
style—the essential element for a balloon ToolTip. It’s informative to look at the other information provided
on the various tabs. For example, you’ll find out that Windows automatically adds some style information,
such as WS_CLIPSIBLINGS.

Close the Properties window. Open a Messages window by right−clicking the window entry and choosing
Messages from the context menu. Figure 9.5 shows the message sequence you can expect to see for the
window. Notice that the window received the TTM_ADDTOOL message as anticipated. You’ll also see the
message that repositions the window on screen.

Balloon Help Example

206

Figure 9.5: The message trail tells you what has happened to the window since it was created.

Using NUnit for Automated Testing

As you create more application code and the code becomes more complex, it becomes important to have a
good testing tool. Microsoft does provide some rudimentary testing tools with Visual Studio .NET, but most
of these tools appear with the Enterprise Architect Edition and don’t provide much in the way of automation.
Consequently, third−party developers have filled in the gaps by creating automated tools for the developer.
NUnit represents one of the tools that fill this gap. You’ll find this product in the \NUnit folder of the CD.

NUnit provides two forms of testing application. The GUI version is accessible from the NUnit folder of the
Start menu. The GUI version enables you to run the application test immediately after adding new code and
provides a neater presentation of the logged errors. You’ll also find a command−line version of the program
called NUnitConsole in the \Program Files\NUnit\ folder of your hard drive. The console version lets you
place several testing scenarios in a single batch file and perform automated testing on more than one
application at a time. You can also schedule testing using the Task Scheduler.

The product works by examining test cases that you create for your application. A test case is essentially a
script that compares the result from your code to an anticipated result (what you expected the code to do). The
test case can also check the truth−value of a return value. The author, Philip Craig, recommends creating a
section of code and then creating a test case for that code. For example, you’ll want to create a minimum of
one test case for each method within a class. In this way, you build layers of code and tests that help locate
problems quickly and tell you when a piece of code that previously worked is broken by a new addition to the
application.

NUnit provides the means to perform individual tests based on a single test case or to create a test suite based
on multiple test cases. The use of a special function, Assert() or Assert−Equals(), enables NUnit to test for the
required condition. When NUnit sees a failure condition, it logs the event so you can see it at the end of the
test. The point is that you don’t have to create test conditions yourself—each test is performed automatically.
Of course, the test cases still need to address every failure condition to provide complete application testing.

Let’s look at a simple example. (You’ll find the source code for this example in the \Chapter 09\NUnitDemo
folder of the CD.) The example code performs simple math operations, but the code could perform any task.
The DoAdd() and DoMultiply() methods both work as written. However, there’s an error in the DoSubtract()
method as shown here:

public static string DoSubtract(string Input1, string Input2)
{
 int Value1;
 int Value2;

Using NUnit for Automated Testing

207

 int Result;

 // Convert the strings.
 Value1 = Int32.Parse(Input1);
 Value2 = Int32.Parse(Input2);

 // Perform the addition.
 Result = Value2 − Value1;

 // Output the result.
 return Result.ToString();
}

Obviously, most developers would catch this error just by looking at the code, but it isn’t always easy to find
this type of error in complex code. That’s why it’s important to write a test routine as part of your application
(or in a separate DLL). Creating the test routine consists of five steps:

Include the NUnitCore.DLL (located in the \Program Files\NUnit\bin folder) as a reference to your
application.

1.

Create a class that relies on the NUnit.Framework.TestCase class as a base class.2.
Add a constructor that includes a string input and passes the string to the base class, such as public
MathCheckTest(String name) : base(name).

3.

Add a test suite property to your code, formatted as public static ITest Suite.4.
Create one or more public test scenarios.5.

There are a number of ways to create the test suite for your application. The two main methods are dynamic
and static, with the dynamic method presenting the fewest problems for the developer. Here’s an example of
the dynamic test suite declaration:

// You must define a suite of tests to perform.
public static ITest Suite
{
 get
 {
 return new TestSuite(typeof (MathCheckTest));
 }
}

As you can see, it’s a simple read−only property. The property returns the type of the test. In this case, it’s the
MathCheckTest class. The example actually includes two classes, so you can see how the classes appear in the
test engine. If you don’t include this property, the test engine will claim that there aren’t any tests—even if
you’ve defined everything else correctly.

The test can be as complex or simple as you need to verify the functionality of the application. The simpler
you can make the test, the better. You don’t want errors in the test suite to hide errors in your code (or worse
yet, tell you there are errors when it’s obvious the code is working as anticipated). Here’s an example of a
simple test method:

// Test the add function using a simple example.
public void TestAdd()
{
 string Expected = "5";
 string Result = MathCheck.DoAdd("2", "3");
 Assert(Expected.Equals(Result));
}

Using NUnit for Automated Testing

208

Sometimes you need two or more test methods to fully examine a method. For example, the DoDivide()
method requires two tests as a minimum. First, you must examine the code for proper operation. Second, you
must verify that the code can handle divide−by−zero scenarios. It’s never a good idea to include both tests in
one test method—use a single method for each test as shown in the example code.

Now that you know what the code looks like, let’s see the code in action. When you first start the NUnitGUI
application, you’ll see a dialog containing fields for the Assembly File and the Test Fixture. Select an
assembly file using the Browse button and you’ll see the test suites the assembly contains in the Test Fixture
field. Each test suite is a separate class and the name of the class appears in the field, as shown in Figure 9.6.

Figure 9.6: An application can contain more than one test suite, but each suite must appear in a separate class.

If you select a test suite and click Run, NUnitGUI will run all of the tests in that suite. However, you might
only want to run one test in the suite. In this case, use the NUnit Ø Show Test Browser command to display
the Show Tests dialog box shown in Figure 9.7. Highlight the individual test you want to run and click Run.
The results of the individual test will appear in the main window as usual.

Figure 9.7: Use the Show Tests dialog box to select individual tests from a suite.

So, what happens when you run the tests? As the tests run, a bar will move across the window to show the test
progress. If the tests run without error, you’ll see a green bar on the main window; a red bar appears when the
application has errors. Figure 9.8 shows a typical example of an application with errors.

Using NUnit for Automated Testing

209

Figure 9.8: This application contains two errors that the test suite found with ease using simple tests.

As you can see, the test found two errors. The first is the subtraction error that I mentioned earlier in the
section. Notice that the lower pane of the main window provides you with enough information to locate the
error in the source code. The second error is one of omission. The DoDivide() method lacks any means for
detecting a divide−by−zero error. This second error points out that NUnit can help you find errors of
commission, as well as errors of omission, given a good test suite.

Where Do You Go from Here?

This chapter has shown you how to use some of the new features found in Windows XP. We’ve explored
what these new features will mean to the user, how they affect the bottom line, and what they mean to you as
a developer. Hopefully, you’ve found that Windows XP fixes more than it breaks—that it’s a step in the right
direction for both usability and compatibility. Of course, nothing’s perfect and Windows XP does have its
share of flaws.

One of the things you should have learned while reading this chapter is that Microsoft has given up on some
old functionality in order to provide new functionality that better fits today’s computing environment. The
problem for you as a developer is all of those lines of existing code that you’ll have to rewrite should you
decide to use a new Windows XP feature. Most of us like to tinker with our code, so the coding part of the
equation isn’t a problem so long as you can get the time approved to create the new code. The problem is the
cost—how much will the new feature contribute and how much will the company have to pay in terms of
development time, user training, and lost investment in existing code. Unfortunately, this is where your work
begins—I can’t guess how Windows XP will affect your company.

Chapter 10 will explore yet more in the way of unique Windows functionality. In this chapter, you’ll learn
about the features that exist in some versions of Windows but not in others. It’s important to know about these
functions. A new function used properly can improve performance, increase reliability, reduce development
and debugging time, and even improve the user experience. Consider Chapter 10 the next logical step after
reading this chapter. It helps you understand how the history of Windows will affect your coding experience
in the Win32 API arena.

Where Do You Go from Here?

210

Chapter 10: Using Operating System Special
Functions

Overview

As mentioned in previous chapters, the first release of the .NET Framework targets business development and
also targets the operating system features that Microsoft felt developers would use most often. Admittedly, the
Win32 API is huge and a significant undertaking, even for Microsoft, so a staged implementation of Win32
API features in the .NET Framework is reasonable from a certain perspective. However, this orientation of the
.NET Framework means that you won’t have access to anything that Microsoft deemed nontypical. This
chapter will help you obtain access to some of these special operating system features and provide pointers on
how to access other features lurking in the dark recesses of the Win32 API.

There are two important considerations in working with special operating system features. The first
consideration is that your application won’t run across all versions of Windows. This might be a moot point
since the .NET Framework won’t load on all versions of Windows. For example, you can’t use the .NET
Framework on a Windows 95 machine.

The second consideration is that the special feature might appear in a different form in the next version of the
.NET Framework. It’s important to realize that Microsoft will continue adding features to the .NET
Framework, making some features you add today using the Win32 API irrelevant tomorrow. Of course, this
consideration applies to the examples found in other chapters of the book to varying degrees, but it’s an
especially important consideration for this chapter.

Once you decide to add a special operating system feature, you need to perform system version checks. This
chapter will help you understand the nuances of performing this check. Fortunately, the Platform SDK
documentation and the C/C++ header files can help you in this regard. You’ll learn how to look for this
information as you build your application. The clues you find, especially in the header files, will make it
easier for you to develop checks that will allow your application to either circumvent version compatibility
problems or, at least, fail gracefully for the function that uses the special operating system feature. The
important point is that your application should run under all versions of Windows but provide some indicator
that a particular version is preferable to provide full application functionality.

Note This chapter builds on some of the information learned in Chapter 9, “Accessing Windows XP Special
Features.” For example, you need to know which version of Windows is running on your system in
order to use unique operating system features. The code found in the section “Determining the Operating
System Version Example” tells you how to check the operating system version. Of course, you’ll need to
modify the code to meet specific application requirements. In some cases, you might need to determine
the server operating system with a little more detail than shown in the example, something you can do
with ease with the data provided. It’s also important to know that all of the checks we made in Chapter 9
also apply to this chapter—the fact that you might use a special Windows 2000 operating system feature
instead of one found in Windows XP makes little difference.

Accessing Status and Other Information

Knowing the status of objects on the platform on which your application is running is essential. For example,

211

if you require the output of a service within your application, it’s important to verify that the service is
actually running. Otherwise, the application will wait forever for information that will never arrive. Unlike
some types of calls, a service that is installed and functioning, yet stopped, doesn’t generate an error message,
so your application will remain in blissful ignorance until it actually determines the status of the service.

When an application executes on more than one machine, the need for status information becomes even more
important. Doubling the number of machines also doubles the number of application failure points and
reduces reliability. An application that doesn’t provide proactive status monitoring is simply a failure waiting
to happen. In short, if you want to create robust, reliable applications, you also need to incorporate some level
of status monitoring in your application. Any resource that could fail without providing error information is a
candidate for monitoring.

There are a number of resources that applications commonly monitor. For example, if your application has
critical power requirements, it might monitor the power system to ensure that it isn’t ready to shut down due
to an error. Many of these resources use services as the means for reporting status information. In other cases,
they’ll use common API calls. For example, you’ll find that the Media Player provides status information
through the Win32 API. When you need status information, it’s important to determine which technique to
use to gather the information. Generally, the use of services is obvious by looking through the Services
console (MMC snap−in).

Unfortunately, the .NET Framework doesn’t provide full service status reporting (although it does provide a
level of service support). For example, the System.ServiceProcess.ServiceBase namespace contains functions
for handling certain types of power−related events, and you can determine what types of events the system
can generate. However, there isn’t any way to determine the current power system status—the information
you’d normally receive using the GetSystemPowerStatus() Win32 API function. You’ll learn how to gain
power status information in this section.

Access to a status function doesn’t necessarily guarantee host system support. We also discuss some of the
problems with version support under Windows. You might be surprised to learn that backward compatibility
often takes a backseat to the requirements of the operating system. For example, in a few cases, Windows XP
provides an updated version of a function and leaves the original version of the function out of the picture.

Using the C/C++ Header Files to Your Advantage

Digging through the C/C++ header files that come with Visual Studio .NET may seem unnecessary and
cumbersome, but sometimes you don’t have much choice if you want to learn the true implementation of a
Win32 API function. We’ve used many techniques in the book to uncover the true implementation of the
functions that we’ve used. However, there’s one class of function that requires more—the function that
doesn’t actually exist.

The Platform SDK documentation discusses a function named RtlCopyMemory(). You’ll notice that the
documentation doesn’t include the usual DLL location information, but as far as the documentation is
concerned, this function exists. However, if you were to try to find this function in the Windows DLLs, you’d
be disappointed—it doesn’t actually exist. Look at the Kernel32.DLL file and you’ll find several Rtl
functions, but no RtlCopyMemory() function. This function is actually implemented as a macro within the
WinNT.H file. (It also helps to look at the code in the WinBase.H file.)

So, how do you replicate the functionality of the RtlCopyMemory() function? It turns out that Kernel32.DLL
does contain the RtlMoveMemory() function. Unlike the RtlCopyMemory() function, the RtlMoveMemory()
function is real, so you can implement the RtlMove−Memory() function within your .NET application.

Chapter 10: Using Operating System Special Functions

212

Viewing the code within the header files will help you replicate the functionality of the alias function.

This problem does point out the need to review problem functions in the C/C++ headers. In many cases,
functions that you assume exist in the DLL files actually exist only as macros or are aliases of existing
functions. The fastest way to determine if a function actually exists is to open the associated DLL with the
Dependency Walker and see if the DLL actually exports the function in question. In many cases, you’ll find
an associated function that’s the true source of the Win32 API call in question.

Learning How to Avoid Version Compatibility Problems

One of the problems with Windows is that every version provides updates to existing features and
incompatible new features while removing some features found in older versions. For example, Windows XP
provides several new API calls while making an effort to get rid of older API calls that might not perform as
well as anticipated in the new Windows environment. In most cases, Microsoft has warned about the loss of
these functions for several Windows versions, so no one uses them anymore and the number of
incompatibilities are reduced. In a few cases, Windows XP actually provides a function stub that calls the new
function for older applications. This is one of the purposes behind the compatibility environment found in
Windows XP—to provide the means for older applications to run in the new environment by redirecting some
outdated calls.

Tip It’s interesting to note that the Win32 API has many hidden compatibility problems that are often made
worse by inaccurate documentation and flawed header files. Unfortunately, many developers don’t realize
how bad the situation can get with new Windows features and will spend hours (sometime days) trying to
fix their code when there’s no fix to apply. In many cases, the developers found on the
microsoft.public.dotnet.framework.interop newsgroup have already run across the problem and can
provide an answer that you might not find on a Web site. In a few cases, you’ll want to ask your question
on a Windows−specific newsgroup. For example, you’ll find some great version−specific help on the
microsoft.public.windowsxp.device_driver.dev newsgroup. The developers that frequent this newsgroup
tend to be different from the ones who frequent the microsoft.public.dotnet newsgroups.

The problem for developers is that not every user has upgraded to Windows 2000 or Windows XP. Some
users are still using Windows 9x and a few might even use Windows 3x. Interestingly enough, this is a point
of discussion on all of the Microsoft developer newsgroups and beyond. Developers don’t know how to
handle mutually incompatible environments. While Microsoft does an excellent job of providing a transition
path for common function calls, older function calls often disappear without a trace, leaving developers
wondering what to do next.

Of course, one of the first tasks a developer needs to perform is to determine how common a function is. In at
least some cases, there isn’t any compatibility problem to consider because the call is so common that
Microsoft must support it. For example, developers will always need a way to obtain the current device
context, so it’s unlikely the GetDC() function will go away anytime soon. However, even with this common
function, incompatibilities exist. A newer GetDCEx() function enables the developer to determine how
clipping takes place, but the function appears to work inconsistently on some platforms. The following
knowledge base articles demonstrate these compatibility issues (the list includes the URL at which you can
find the complete story):

Q174511 Access Violation in Win32K When Calling GetDCEx
(http://support.microsoft.com/default.aspx?scid=kb;en−us;Q174511)

Learning How to Avoid Version Compatibility Problems

213

Q118472 PRB: SelectClipRgn() Cannot Grow Clip Region in WM_PAINT
(http://support.microsoft.com/default.aspx?scid=kb;en−us;Q118472)

Q149289 BUG: GDI Leaks Memory When Font Selected In MM_ISOTROPIC and MM_ANISOTROPIC
Mode (http://support.microsoft.com/default.aspx?scid=kb)

Q255744 HOWTO: Obtain a Device Context Handle for a Print Device
(http://%20support.microsoft.com/default.aspx?scid=kb;en−us;Q255744)

Notice that this list contains Microsoft Knowledge Base articles. If the folks at Microsoft receive enough
reports of a verifiable error, they’ll create a Knowledge Base article for it. Unfortunately, they aren’t always
very good at telling anyone about these articles, so you have to “discover” them on your own as the need
arises. The Microsoft Knowledge Base URL is http://search.support.microsoft.com/search/default.aspx. If you
can’t find what you need, Google Advanced Search (http://www.google.com/advanced_search) often provides
better answers and in less time. However, the problem with Google Advanced Search is that the results aren’t
limited to problems—you obtain information on every aspect of the Win32 API call.

Tip Many other developers are struggling with the same problems that you face in working with the .NET
Framework. In a few cases, you’ll find examples of their work online. For example, the 15 Seconds site
(http://www.15seconds.com/) contains a wealth of code in various languages. This site also provides
articles that look at the .NET Framework in depth, providing you with the insights needed to create useful
code. Another great place to look for coding examples is Programmer’s Heaven
(http://www.programmers−heaven.com/). This site specializes in coding examples, but it isn’t .NET
specific—you’ll find everything from assembler to Perl beside the .NET examples. A great place to look
for tutorial−type examples is .NET Extreme (http://www.dotnetextreme.com/). Make sure you also revisit
The Code Project site mentioned in Chapter 5 and the GotDotNet site mentioned in Chapter 7. Both sites
contain a wealth of code that demonstrates how to use special operating system features.

Once you determine there’s a possibility of compatibility problems with a certain function, you need establish
the host operating system version. We’ve already discussed that issue as part of the section “Determining the
Operating System Version Example” in Chapter 9. This example shows you how to detect the operating
system version based on the output of the GetVersionEx() function. Knowing the host operating system
version enables you to use the correct call based on the application environment. Of course, there’s often no
way to overcome limitations in the application environment. If the version of Windows in use on the host
system doesn’t support a particular feature, you’ll need to report the loss of functionality to the user or create
an alternative application feature with similar functionality.

Avoiding compatibility problems means more than just knowing the contents of the Microsoft Knowledge
Base and the version of Windows installed on the host system. The final piece in the version compatibility
puzzle is to know when a feature won’t work as anticipated despite what Microsoft might say. Watch the
newsgroups and you’ll find almost daily reports to Microsoft of problems. In many cases, Microsoft will
admit that the problem exists, but a Knowledge Base article is a long time in coming because there’s either no
fix for the problem or the Microsoft developers will determine that they actually meant a feature to work in a
certain way all of the time. The developers on these newsgroups aren’t always correct, but they’re dedicated
and can usually provide you with tips on how to avoid or fix a compatibility problem using techniques that are
often undocumented and not supported by Microsoft. Of course, the choice is yours. You can choose to ignore
the error, work around it using an undocumented fix, or create your own workaround using documented
techniques.

Learning How to Avoid Version Compatibility Problems

214

Determining System Power Status Example

The example in this section shows how to use the GetSystemPowerStatus() function. Remember that the
purpose of this function is to retrieve power system information. If you want to interact with the power
system, such as when the system is about ready to shut down due to a power failure, then you need to use the
events found in the System.ServiceProcess.ServiceBase class. In addition, don’t confuse the
GetSystemPowerStatus() function with the GetSystem−PowerStatusEx() or GetSystemPowerStatus2()
functions. The latter two functions only work with the Windows CE operating system. Listing 10.1 shows
how to use the GetSystemPowerStatus() function. The source code for the example appears in the \Chapter
10\C#\PowerStat and \Chapter 10\VB\PowerStat folders of the CD.

Listing 10.1: Monitoring the Power Status of a System

// This is the function that will retrieve the power status
// information.
[DllImport("Kernel32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern bool GetSystemPowerStatus(
 ref SYSTEM_POWER_STATUS lpSystemPowerStatus);

// This data structure contains the power system status on return
// from the GetSystemPowerStatus() call.
public struct SYSTEM_POWER_STATUS
{
 public Byte ACLineStatus;
 public Byte BatteryFlag;
 public Byte BatteryLifePercent;
 public Byte Reserved1;
 public Int32 BatteryLifeTime;
 public Int32 BatteryFullLifeTime;
}

// The BatteryStatus enumeration enables the application to detect
// the current battery status.
public enum BatteryStatus
{
 High = 1,
 Low = 2,
 Critical = 4,
 Charging = 8,
 NoBattery = 128,
 Unknown = 255
}

private void btnTest_Click(object sender, System.EventArgs e)
{
 SYSTEM_POWER_STATUS SPS; // The power status.
 StringBuilder Stats; // Power status display string.

 // Initialize the data structure.
 SPS = new SYSTEM_POWER_STATUS();

 // Determine the power status.
 if (!GetSystemPowerStatus(ref SPS))
 {
 // Display an error message.
 MessageBox.Show("Couldn’t determine the power status!",
 "Application Error",
 MessageBoxButtons.OK,

Determining System Power Status Example

215

 MessageBoxIcon.Error);

 return;
 }

 // Create the power system information display string.
 Stats = new StringBuilder();

 // Determine the AC Line status.
 switch(SPS.ACLineStatus)
 {
 case 0:
 Stats.Append("On Battery\r\n");
 break;
 case 1:
 Stats.Append("On AC Line\r\n");
 break;
 case 255:
 Stats.Append("AC Line Status Unknown\r\n");
 break;
 }

 // Determine the battery status.
 if (SPS.BatteryFlag == (Byte)BatteryStatus.Unknown)
 Stats.Append("Battery Status Unknown\r\n");
 else
 if (SPS.BatteryFlag == (Byte)BatteryStatus.NoBattery)
 Stats.Append("No Battery Installed\r\n");
 else
 {
 // The battery status is known and there is a
 // battery installed.
 if ((SPS.BatteryFlag & (Byte)BatteryStatus.Charging)
 == (Byte)BatteryStatus.Charging)
 Stats.Append("Battery is Charging\r\n");
 if ((SPS.BatteryFlag & (Byte)BatteryStatus.Critical)
 == (Byte)BatteryStatus.Critical)
 Stats.Append("Battery Power is Critical\r\n");
 if ((SPS.BatteryFlag & (Byte)BatteryStatus.High)
 == (Byte)BatteryStatus.High)
 Stats.Append("Battery Power is High\r\n");
 if ((SPS.BatteryFlag & (Byte)BatteryStatus.Low)
 == (Byte)BatteryStatus.Low)
 Stats.Append("Battery Power is Low\r\n");
 }

 // Determine the percentage of battery charge.
 if (SPS.BatteryLifePercent == 255)
 Stats.Append("Cannot Determine Battery Charge\r\n");
 else
 Stats.Append("Battery Life in Percent: " +
 SPS.BatteryLifePercent.ToString() + "%\r\n");

 // Determine the remaining battery life.
 if (SPS.BatteryLifeTime == −1)
 Stats.Append("Cannot Determine Remaining Time\r\n");
 else
 Stats.Append("Remaining Battery Time (Seconds): " +
 SPS.BatteryLifeTime.ToString() + "\r\n");

 // Determine the full charge rundown time.

Determining System Power Status Example

216

 if (SPS.BatteryFullLifeTime == −1)
 Stats.Append("Cannot Determine the Full Charge Time");
 else
 Stats.Append("Full Charge Rundown Time (Seconds): " +
 SPS.BatteryFullLifeTime.ToString());

 // Transfer the data to the display.
 txtOutput.Text = Stats.ToString();
}

The GetSystemPowerStatus() function declaration includes a reference to the SYSTEM_POWER_STATUS
data structure, which contains the power status information. Notice that the example uses Byte values for
many of the SYSTEM_POWER_STATUS data structure elements. It’s important to use an unsigned integer
value when working with these elements because of the way that the Platform SDK documentation describes
the data structure. The BatteryLifeTime and BatteryFullLifeTime fields are of type Int32 because the
documentation actually describes them using unsigned values. This seeming dichotomy in the same data
structure is actually quite common for the Win32 API.

The btnTest_Click() method begins by creating and initializing the data structure. It also creates a
StringBuilder object that we’ll use to create the output string. Remember that the StringBuilder provides
optimal string handling when you plan to manipulate and add to the string value several times in the same
method. However, the StringBuilder also requires more memory than a standard String, so you need to use it
with care.

The code makes the GetSystemPowerStatus() call and tests the return value. If the call returns false, it likely
failed because the Uninterruptible Power Supply (UPS) service isn’t started. Make sure you check the
Uninterruptible Power Supply service and start it if necessary, as shown in Figure 10.1. The
GetSystemPowerStatus() function actually returns other values if the host system doesn’t support a UPS.

Figure 10.1: The Uninterruptible Power Supply service must be running before this application will work.

Once the code knows that the Uninterruptible Power Supply service is installed and running, it begins
checking the power status information. The first check is to determine the AC line status, which is found in
the SPS.ACLineStatus field. A return value of 255 for this field usually means that the Uninterruptible Power
Supply service is configured incorrectly (or perhaps not at all). The Power applet found in the Control Panel
helps configure the UPS if there are no third−party utilities installed on the host machine. Figure 10.2 shows

Determining System Power Status Example

217

the UPS tab of the Power Options Properties dialog box, which is used to install and configure a UPS for the
system. Notice that the default Windows drivers don’t supply very much information. You can normally see
more information when using a third−party driver specifically designed for the UPS.

Figure 10.2: An incorrectly configured UPS will return odd AC line status information.

The next step in the process is to determine the battery status using the SPS.BatteryFlag field. This flag is
somewhat odd in that you don’t work with it as a flag until you make two checks with it first. If the flag
returns a value of 255, then the system couldn’t determine the battery status. This usually means that the
system lacks a UPS, that the cable between the system and the UPS is faulty, or that some other condition has
caused a loss of communication between the UPS and the system.

The second check determines the battery status when communication is enabled. A simple UPS will usually
say that there’s no battery installed (at least according to the Platform SDK), which doesn’t make sense if
there’s a UPS attached to the system. In many cases, a return value of 128 simply means that the UPS is
incapable of reporting the battery status. Many companies are unwilling to spend the extra money required to
buy a UPS that includes reporting hardware.

If the code determines that the UPS can communicate and that there’s a battery installed (or at least the
hardware to monitor the battery), it can begin using the SPS.BatteryFlag field as a flag. The battery
monitoring hardware in the UPS can return any of the condition codes shown in the example. For example,
the battery could be both low on power and charging.

The remaining fields in the SPS structure contain numeric information. However, notice that the code must
treat the SPS.BatteryLifePercent field differently from the SPS.BatteryLifeTime field. In the first case, a return
value of 255 means that the code couldn’t determine the percentage of battery charge, while in the second
case, a return value of −1 means the code couldn’t determine the amount of battery time left. Both fields
report a numeric value, but the first is a Byte value instead of an Int32 value. Figure 10.3 shows the output
from the example application.

Determining System Power Status Example

218

Figure 10.3: The example application will tell you the status of the power system.

Creating an Application Shortcut Example

For some developers, creating new types of code is the goal rather than a necessity for creating an application.
Code reuse is something they’d rather avoid because reusing code deprives them of a new coding experience.
However, it’s not always necessary to have a coding adventure unless you need some special functionality
that existing applications can’t provide. One such example is the application shortcut. You can’t create an
application shortcut using the .NET Framework. Consequently, the first solution some developers will attempt
to use is the long and arduous implementation of complex COM interfaces within the managed environment.
This section of the chapter demonstrations that you don’t always have to reinvent the wheel to obtain an
objective—sometimes other solutions present themselves.

Tip In some cases, you have to take the COM coding route because you can’t gain access to the functionality
you need from other sources. In fact, implementing COM interfaces is the rule rather than the exception
shown in this section of the chapter. To see an application shortcut example implemented using C#, see
http://www.msjogren.net/dotnet/eng/. This example has many features to recommend it, so it’s something
that you should consider. However, the example in this section of the chapter has the advantage of being
quick and easy to implement.

The Windows Scripting Host (WSH) already provides the functionality we need and in an easy−to−use
package. The IWshRuntimeLibrary interface contains the CreateShortcut() method described at
ms−help://MS.VSCC/MS.MSDNVS/script56/html/wsMthCreateShortcut.htm. The CreateShortcut() method
contains all of the functionality that most developers will need to create an application (or any other) shortcut.
The advantage of using this technique is that you don’t need to consider COM interfaces in your application.
The disadvantages include being unable to use this technique if the user disables scripting and experiencing
problems in implementing the required functionality in situations that WSH isn’t designed to handle.

The first thing you’ll need to do is add WSH support to your application. This is easier said than done because
the Microsoft documentation isn’t very clear about the COM element used to implement WSH. You’ll need to
add a reference to the Windows Script Host Object Model as shown in Figure 10.4. Notice that this support
appears in wshom.ocx on my machine. After you add the reference, you’ll notice that the name in the
References folder changes to the IWshRuntimeLibrary interface.

Creating an Application Shortcut Example

219

Figure 10.4: Adding WSH support to your application is easy after you figure out where it’s stored.

After you add the WSH support, it pays to look through the features this COM object provides. Figure 10.5
provides a view of just some of the features you can access through WSH. It often pays to look at WSH first if
you need operating−system−level functionality that you can’t obtain using a standard Win32 API call. While
WSH doesn’t answer every need, it’s a good alternative.

Now that you have an idea of how we’re going to pursue this problem, let’s look at an example. Listing 10.2
shows a simple example of using WSH to create a shortcut on the Desktop. Of course, you could place the
shortcut anywhere, but a good starting place is on the Desktop, where it’s easily seen. You’ll find the source
code for this example in the \Chapter 10\C#\AppLink and \Chapter 10\VB\AppLink folders of the CD.

Figure 10.5: The Object Browser shows that WSH has a lot to offer as an alternative to the Win32 API.

Listing 10.2: Creating a Shortcut with WSH

private void btnCreateShortcut_Click(object sender, System.EventArgs e)
{
 // Create a new copy of the WSHShell.
 WshShell WSHShell = new WshShell();

 // Determine the location of the Desktop.
 Object ItemName = "Desktop";
 Object Desktop = WSHShell.SpecialFolders.Item(ref ItemName);

 // Create a link on the desktop.

Creating an Application Shortcut Example

220

 IWshShortcut Link =
 (IWshShortcut)WSHShell.CreateShortcut(Desktop.ToString() +
 @txtLinkName.Text);

 // Fill in the details.
 Link.TargetPath = @txtFilename.Text;
 Link.Description = txtDescription.Text;

 // Save the link to the desktop.
 Link.Save();
}

The code begins by creating a new WshShell object. You don’t need to do anything special to instantiate the
object—it works like many other COM objects in this regard. Notice that we also don’t need any arguments
for this call.

Once the code has access to WSH, it can begin making calls. The first call determines the location of the
Desktop. Notice that you must create an object to store the item name string and that the call returns an object
that you’ll need to convert to a string. One of the problems with using WSH seems to be a heavy reliance on
objects that you have to convert to every other type—including strings.

The code creates a shortcut object (Link). You must supply the full path to the eventual shortcut LNK file. The
code converts the Desktop to a string and then adds the input from the form to create the Link output.

We haven’t actually created a shortcut yet, just a shortcut object. The next step is to fill in the shortcut details.
The example includes only the TargetPath and Description property values. WSH also provides access to the
following shortcut properties:

Arguments•
FullName•
Hotkey•
IconLocation•
RelativePath•
WindowStyle•
WorkingDirectory•

After the code fills out the shortcut information, it uses the Save() method to create a permanent copy of the
shortcut. Note that there’s also a Load() method you can use to load the data from an existing shortcut. This
feature enables the developer to modify existing shortcuts as needed. Figure 10.6 shows the output of this
example.

Creating an Application Shortcut Example

221

Figure 10.6: The example application creates a shortcut on the Desktop with the requested comment.

Shutting the System Down Remotely Example

You’ll run into situations in which you need to shut a system down from a remote location. Most people
associate this action with servers; the server might reside in a closet and not even include a monitor and
keyboard. However, remote shutdown becomes more important for desktop computers on a daily basis. For
example, when a user logs in from a remote location, part of the login process could turn the user’s desktop
computer on and prepare it for use. When the user session ends, it’s good practice to shut the computer back
down. This action could also occur when a maintenance action takes place. In sum, the uses for a remote
shutdown are numerous.

Note This chapter doesn’t tell how to shut a system down locally because we’ve already discussed this issue
as part of the message processing information in Chapter 4. See the section “Demonstrating the
Windows Message Handler” in Chapter 4 for an example of how you can shut down your system
locally. This chapter also shows how to trap and handle shutdown messages—an essential feature for
many applications.

From the discussion in Chapter 4, you know that the ExitWindows() and ExitWindowsEx() functions only
work on the local computer. If you want to shut down a remote computer, you need to use the
InitiateSystemShutdown() or the InitiateSystemShutdownEx() function. The main difference between the
latter two functions is that the InitiateSystemShutdownEx() function allows the developer to log a reason for
the shutdown in the system log. Before either of these functions will work, however, the remote system has to
allow remote shutdowns. In addition, there are a number of Windows bugs that appear in the Platform SDK
documentation that will prevent a remote shutdown. For example, Windows 9x will often refuse to shut down
after a remote request if the system is locked for some other reason (such as when the screensaver is active).

Now that you have some idea of what the example will do, let’s look at the code required to shut down a
remote system. Listing 10.3 shows the code we’ll use for this example. This source code is incomplete—it
leaves out the enumerations we used for the example in Chapter 4. The source on the CD does contain the
complete code. You’ll find the code in the \Chapter 10\C#\RemoteShutdown and \Chapter
10\VB\RemoteShutdown folders of the source code CD.

Listing 10.3: A Technique to Shut Down a System Remotely

Shutting the System Down Remotely Example

222

// This function performs the remote shutdown.
[DllImport("AdvAPI32.DLL")]
public static extern Boolean InitiateSystemShutdownEx(
 String lpMachineName,
 String lpMessage,
 Int32 dwTimeout,
 Boolean bForceAppsClosed,
 Boolean bRebootAfterShutdown,
 UInt32 dwReason);

private void btnShutdown_Click(object sender, System.EventArgs e)
{
 // Shut the remote system down.
 if (!InitiateSystemShutdownEx(
 txtMachine.Text,
 txtMessage.Text,
 Int32.Parse(txtTimeout.Text),
 ckAppClose.Checked,
 ckReboot.Checked,
 (UInt32)ReasonMajor.SHTDN_REASON_MAJOR_OTHER |
 (UInt32)ReasonMinor.SHTDN_REASON_MINOR_MAINTENANCE |
 (UInt32)ReasonFlag.SHTDN_REASON_FLAG_PLANNED))

 // Display an error if not successful.
 MessageBox.Show("Couldn’t Shut Remote System Down",
 "Shutdown Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 else
 // Display a success message.
 MessageBox.Show("Remote System Shutting Down",
 "Shutdown Success",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
}

As you can see, the InitiateSystemShutdownEx() function code isn’t complex and you don’t need to perform a
lot of setup to use it. However, this example does point out some additional inconsistencies of the Win32 API.
Compare this example to the ExitWindowsEx() function in Chapter 4 and you’ll see that it’s actually easier to
use, in some ways, because it doesn’t require as many flags and enumerations. Figure 10.7 shows the input
dialog box for this example. Notice that it includes options for setting the forced application close and the
automatic reboot options.

Shutting the System Down Remotely Example

223

Figure 10.7: The example application provides inputs for most of the InitiateSystemShutdownEx() features.

If you set the lpMachineName argument to null, the InitiateSystemShutdownEx() function will shut down the
local machine instead of a remote machine. However, the only way to do this with a .NET application is to
provide an override that includes an IntPtr as the first argument. Using a value of IntPtr.Zero will set the first
value to null. Generally, however, you’ll want to use ExitWindowsEx() whenever possible for local shutdown
because it exits cleanly.

The lpMessage argument displays a message on screen. It’s usually a good idea to tell the user why you want
to shut the system down. On the other hand, there’s no reason to include a message for a server in a closet, so
you can set this argument to null.

A final consideration for this example is the bForceAppsClosed. Setting this value to true means that
Windows will close without allowing the user to save their data. In the case of a frozen machine or a server,
this could actually make it possible for the machine to reboot, albeit with some loss of data. However, you’ll
normally set this argument to false when rebooting a user machine on the network so the user has time to save
their data. Figure 10.8 shows the remote message that the InitiateSystemShutdownEx() function creates.

Figure 10.8: The InitiateSystemShutdownEx() function creates a remote message for the user.

Shutting the System Down Remotely Example

224

Obtaining Device Capabilities Example

It’s important to know the capabilities of the devices installed on your system. Of course, Windows provides a
myriad of ways to find this information. For example, in Chapter 7 you learned the techniques for discovering
the capabilities of the parallel and serial devices attached to a system. However, one function stands out from
the rest as providing a little more in the way of generic information, the GetDeviceCaps() function. This
function helps you obtain information about any device with a device context, which includes printers and
even cameras.

Tip A number of Web sites now offer small Win32 API examples. One of the better places
to find short examples on using the Windows Management Interface (WMI) is the
VBnet Visual Basic Developers Resource Centre (http://www.mvps.org/vbnet/). This
site also offers a number of other interesting examples. For instance, it includes a
couple of short examples on performing security tasks and simple data routines (such
as converting temperatures from one unit of measure to another). Most of the examples
on this site are oriented toward a specific task, so you’ll often find interesting nuggets
of code buried in a task normally associated with another call.

The GetDeviceCaps() function requires two arguments. The first is a handle to a device context—the IntPtr
that we’ve used in several other examples. The second is an index into the data for that device context. We’ll
use an enumeration for this example. The actual C header contains a set of #define entries, but an enumeration
normally works better in the managed environment. Unlike other functions we’ve used, you can return only
one value at a time when using the GetDeviceCaps() function. This function doesn’t accept a structure that
returns all of the required values because the values you can request vary by device type.

Note It pays to look through the enumerations for the GetDeviceCaps() function because not all of the
functions appear in the Platform SDK documentation. In some cases, such as NUMMARKERS, the
value is device specific. In other cases, the value is operating system version specific—several of the
values only work with Windows 2000 and Windows XP. Make sure you understand the purpose of an
undocumented value before you use it.

Now that you have a better idea of how the GetDeviceCaps() function works, let’s look at some code. Listing
10.4 contains the working code for this example. The enumerated values are quite long, so I left them out of
the listing in this case. Be sure to check the enumerated values in the source code found in the \Chapter
10\C#\DevCaps and \Chapter 10\VB\DevCaps folders of the CD.

Listing 10.4: Using the GetDeviceCaps() Function

// This function returns the device capability value specified
// by the requested index value.
[DllImport("GDI32.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 GetDeviceCaps(IntPtr hdc, Int32 nIndex);

private void btnTest_Click(object sender, System.EventArgs e)
{
 IntPtr hDC; // Device context for current window.
 Int32 Result; // The result of the call.
 StringBuilder Output; // The output for the method.

 // Obtain a device context for the current application.
 hDC = GetDC(this.Handle);

 // Check for errors.

Obtaining Device Capabilities Example

225

 if (hDC == IntPtr.Zero)
 {
 // Display an error message.
 MessageBox.Show("Couldn’t obtain device context!",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 return;
 }

 // Obtain the current display capability.
 Output = new StringBuilder();
 Result = GetDeviceCaps(hDC, (Int32)DevCapParm.DESKTOPHORZRES);
 Output.Append("The horizontal resolution: " + Result.ToString());
 Result = GetDeviceCaps(hDC, (Int32)DevCapParm.DESKTOPVERTRES);
 Output.Append("\r\nThe vertical resolution: " + Result.ToString());
 Result = GetDeviceCaps(hDC, (Int32)DevCapParm.BITSPIXEL);
 Output.Append("\r\nThe bits/pixel value: " + Result.ToString());

 // Display the results.
 MessageBox.Show(Output.ToString(),
 "Current Display Capabilities",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 // Release the device context when finished.
 ReleaseDC(this.Handle, hDC);
}

The application begins by obtaining the device context for the display. It’s essential that you obtain the device
context for whatever drawing device you want to learn about. This might mean creating a managed object of
the right type and using it to obtain the correct device context. In a few cases, you’ll need to use additional
Win32 API calls to access the device because the .NET Framework doesn’t provide the correct support.

After the code obtains the device context handle, it can begin calling GetDeviceCaps(). The output value is
always returned as a number that you can convert to something the user will understand or a value your
application can use for drawing or other tasks. The application obtains three common values that you can
check using the Display Properties dialog box: horizontal resolution, vertical resolution, and the number of
bits per pixel. Figure 10.9 shows the output from the application.

Figure 10.9: The application displays common display characteristics.

It’s important to remember to release the device context before the application exits or it will have a memory
leak. The last act of the application is to use the ReleaseDC() function discussed in other chapters to release
the handle and associated resources obtained using the GetDC() function.

Obtaining Device Capabilities Example

226

File Compression

Microsoft doesn’t provide an easy method for compressing files as part of the documented Win32 API. In
fact, compressing a file is so difficult under Windows that most developers turn to third−party libraries to
perform the task. However, it’s possible to decompress files and this support isn’t found in the .NET
Framework.

Tip There are a number of good third−party libraries available for compressing and decompressing files in the
ZIP format. One of the better libraries is The Zip/GZip Implementation For .NET at
http://www.icsharpcode.net/OpenSource/NZipLib/default.asp. The author provides both a compiled
version of the library (it’s an assembly rather than a DLL) and the accompanying source code. A short
look at the source code will help you appreciate just how much work went into this library. A second
library is the ZZIPlib Library found at http://zziplib.sourceforge.net/. This second product is also free for
the price of a download. It relies on another third−party library for some functionality. However, this
product also seems to have more usage documentation and therefore might be easier to learn.

One of the older methods for compressing Windows files relies on the Lempel−Ziv algorithm. Consequently,
most of the function names associated with this compression method begin with LZ. The problem with the LZ
functions is that they’ve been around for a long time and Microsoft has made many of them obsolete. While
the names of the functions still float around the Internet (with example code no less) and the function names
still appear in the Platform SDK documentation, the older functions themselves are obsolete and you should
avoid using them. See the Obsolete Windows Programming Elements help topic at
ms−help://MS.VSCC/MS.MSDNVS/win32/obsol_044z.htm for additional information.

You should remember one LZ function and that’s LZCopy(). This function accepts two arguments as
input—the source and the destination filenames. If the source file is compressed, LZCopy() will decompress it
and copy it to the destination file. Otherwise, LZCopy() performs a straight copy of the file. To obtain the
handles required for the LZCopy() function, you can use any of a number of file−opening functions, including
LZOpen(), which is the recommended function for the source file because it allocates resources required by
the LZCopy() function. If you open a file using LZOpen(), you must close it using the LZClose() function.
Microsoft completes the LZ series of functions with two functions for working with pieces of a file rather than
the file as a whole, LZRead() and LZSeek(). The two functions perform tasks that you’d expect, given their
names. These functions appear in LZ32.DLL.

Microsoft doesn’t use just the Lempel−Ziv algorithm anymore, so you might not be able to use the LZ
functions. There are new functions that handle both the Lempel−Ziv algorithm and the newer MSZIP format.
The first two functions are SetupGetFileCompressionInfo() and SetupGetFileCompressionInfoEx(). These
functions help you determine the status of the file, including the type of compression used to create it. Once
you know a little more about the file, you can use the SetupDecompressOrCopyFile() function to decompress
it. You’ll find these functions in SetupAPI.DLL.

Windows XP users might wonder how Microsoft displays ZIP files in Explorer and optionally allows you to
add files to them. This functionality resides in ZIPFldr.DLL, which is found in the \System32 folder along
with the rest of the system DLLs. The undocumented RouteTheCall() function aids in performing the magic
Windows XP users see in Explorer. Unfortunately, everything about this DLL is undocumented and no
amount of coaxing seems to help. Generally, you’ll find it a lot easier to work with a third−party product than
to decipher the inner workings of ZIPFldr.DLL. In fact, some industry pundits have found the ZIP file support
so slow in Windows XP that they advocate turning it off. (See sites such as ZDNet Australia at
http://www.zdnet.com.au/reviews/software/os/story/0,2000023564,20261492,00.htm for details.)

File Compression

227

Using PC−Lint for C++ Development

We’ve looked at more than a few wrapper DLLs so far in the book. None of them involve heavy−duty Visual
C++ programming, but there’s enough code involved that it would be nice to get a little help—especially if
you aren’t as familiar with Visual C++ as you are with other languages. PC−Lint is a source code analysis
tool. It helps you find programming errors that the compiler won’t find. There are a number of Visual C++
analysis tools on the market, but many look just as complex as Visual C++ itself. These tools are designed to
help a developer perform the tasks for which Visual C++ is known—low−level programming. PC−Lint is
more of a tool designed for everyone—it can help you find problems in your code no matter how experienced
or inexperienced you might be.

As unfortunate as it might seem, I was unable to obtain an evaluation version of PC−Lint to include on the
CD. However, the vendor does provide a fact−filled Web site and you can always call or write for additional
information. The Gimpel contact information is as follows:

Gimpel Software
3207 Hogarth Lane
Collegeville, PA 19426
(610) 584−4261 (voice)
(610) 584−4266 (fax)
http://www.gimpel.com/

One of the things that impressed me from the outset about this tool is the ease of installation. If every
application I had to install were this easy, there would never be a need for technical support line. In addition,
PC−Lint appears to support every version of Visual C++ in existence, not to mention the C/C++ compilers
from a wealth of other vendors, including Borland, Datalight, IBM, Intel, Lattice, Symantec, Texas
Instruments, Top Speed, Turbo, and Watcom (there are still more). Most important for .NET developers is
that this is one of the first products to fully support Visual C++ .NET.

The installation program leads directly into a configuration program. The configuration program sets
application defaults. For example, you can configure PC−Lint to support a specific memory model that
includes the new 64−bit environment. Configuration includes the addition of default libraries, including
libraries from other vendors if you use them. One of the more interesting configuration options enables you to
select a specific book author’s recommendations for setup. The author−recommended settings often result in
an analysis that includes more details than many developers would like. Unless you agree completely with a
particular author’s way of writing code, you might want to avoid this option. One of the final configuration
options asks where the header files are for your C/C++ installation. Once you complete this step, the
configuration file is complete. However, you don’t have to stop at one configuration—PC−Lint automatically
asks if you want to create additional configuration files. Each configuration file will automatically configure
PC−Lint for a particular environment, which can save a substantial amount of time.

If you think you’re done when the configuration is set up, you’d be only partially correct. PC−Lint also
provides the means for suppressing unwanted messages. This information is stored in a separate file, not with
the configuration information. Essentially, the message suppression feature provides a method for telling
PC−Lint just how much help you want it to provide. I wish more products offered this option because some
do help me more than I’d like. The questions ask how you’d like to format your code and what tests you’d like
PC−Lint to perform. For the purposes of this section, I decided not to suppress any of the messages— I was
curious to see just how much help PC−Lint can provide.

Gimpel Software provides the PC−Lint documentation in PDF format, along with the latest version of Adobe

Using PC−Lint for C++ Development

228

Acrobat to read it. Overall, the documentation is organized like most developer products. However, it does
include some perks, such as a clearly written set of usage instructions and a short tutorial. The test files all
worked as explained in the text. Figure 10.10 shows an example of the output from one of these test files after
I ran it through PC−Lint. Note that this output uses the default configuration information. PC−Lint includes a
large number of command−line switches that affect its operation—everything from the way it processes the
file to the level of output verbosity. Appendix A of the PDF manual contains a complete list of these
command−line switches.

Figure 10.10: Typical output from PC−Lint showing application error information

The output appears on screen and within the _LINT.TMP file. Each entry includes a line number so you can
find the affected code quickly. The entries also include an error number, an error message, and a code snippet
as needed. Of course, you have to decipher the meanings of the error codes by looking at Chapter 17 of the
PDF supplied with the product. Overall, the explanations are a little short, but they’re understandable to
anyone who’s worked with C or C++ code for very long. The point is that this code normally compiles
without error—PC−Lint locates errors that would normally cost you debug time.

Note For those who don’t own an IDE that produces line numbers, Gimpel Software provides the PR
utility, which prints out the source code with line numbers included. The PR utility provides all
of the switches needed to produce formatted code output that you can mark up as you go
through the errors in the _LINT.TMP file. It even provides a special switch that determines the
placement of the last form within the printer (just in case you haven’t retired that dot−matrix
yet).

After working with the test files for a while, I tried a few test files of my own. PC−Lint worked flawlessly on
every unmanaged file that I tried. However, there are a few things that you should consider when using
PC−Lint. This tool will find errors that the IDE might miss, but it doesn’t necessarily find every error in your
code. For example, a test application that I created used an LPTSTR without first allocating memory for it.
The result is that the application crashes. Neither the IDE nor PC−Lint found the problem because neither tool
is designed to find problems of that sort. However, PC−Lint did find a structure error that the IDE missed in
the same test program. In sum, don’t rely on any tool to fix poor programming technique. The best you can
hope to achieve is reduced debugging, not an elimination of application debugging.

I also noticed a few irregularities when working with managed code. The biggest problem is that PC−Lint will
stumble on the legitimate using and namespace keywords. Figure 10.11 shows the output from the
OSVersion.DLL source code found in Chapter 9. Notice that the using and namespace keywords are the only
errors found in this example, so it’s safe to say that PC−Lint didn’t find any errors. The point is that the
product might locate other "errors" in managed code that aren’t really errors at all.

Using PC−Lint for C++ Development

229

Figure 10.11: PC−Lint doesn’t handle managed code as well as it could.

Generally, PC−Lint is an invaluable tool if you plan on writing much code in Visual C++. Given the number
of places we use Visual C++ in this book, using PC−Lint if your first language is Visual Basic or C# could
save considerable time. The best way to view PC−Lint is as a tool that saves the developer time in locating
little nagging errors—the kind that require hours to locate because you’ve viewed the code once too often.

Where Do You Go from Here?

This chapter has shown you some of the special features that newer versions of Windows can provide. It’s
also helped you understand the need to exercise care when using these functions, how to create your
applications to use alternatives when possible, and how to allow specific application functions to fail
gracefully when necessary. Of course, creating applications that use advanced operating system features
creates compatibility problems, but it also enables you to enhance the functionality of your applications.

Microsoft spent a great deal of time working on .NET Framework features that would appeal to business users
and work on the greatest number of Windows versions. Your job as a developer is to ensure that your
applications ship with the maximum functionality possible for the operating system on which they will run. Of
course, this means spending some time as a detective ferreting out the operating system features you need. In
many cases, this time−consuming process is made easier by simply checking the Microsoft Web sites to learn
what new versions of Windows add to the capabilities of their predecessors. One of the things you might want
to do today to save work tomorrow is begin keeping a list of new operating system features you’d like to use.
Newsgroups, magazines, Web sites, and other sources usually tell you about the latest Windows
features—make sure you keep track of these features for future use.

Make sure you check at least a few of the Web sites listed in this chapter. In many cases, they can save you
time by providing example code or at least ideas on which Win32 API functions make most sense for .NET
developers. When you do learn about a new function, try testing it out on the members of one of the
newsgroups listed in this and previous chapters. Generally, you’ll find that someone in the newsgroup has at
least tried the function and knows some of the problems that you’ll run into.

Chapter 11 looks at one of the add−on features of Windows—the Media Player. This utility is shipped as part
of Windows, but it resides as a separate part of the operating system. The fact that you can find this utility in
every Windows installation means that you can rely on it to play certain types of media files. Because the
.NET Framework ships with less than stellar support for the Media Player, you need to access it using the
Win32 API for the most part. Chapter 11 will provide everything you need to get started adding media pizzazz

Where Do You Go from Here?

230

to your applications.

Where Do You Go from Here?

231

Chapter 11: Accessing the Media Player

Overview

The Windows Media Player began as a simple utility for playing wave and musical instrument digital
interface (MIDI) sound files. Its capabilities were distinctly limited to playing simple sounds and the few
pieces of music designed to go with it. Of course, when the Windows Media Player arrived on the scene,
being able to play sounds at all was considered quite novel. Even the noise produced by early computers was a
welcome change from complete silence.

Today, however, video games and other multimedia presentations have taken both sound and video well
beyond the realm of simple noises. Users today demand more from their applications because the systems
they use are capable of doing much more than in any time in the past. The computers of today can create
presentation−quality graphics and sound that are almost as good as the best product Hollywood can produce.

This chapter won’t turn you into a budding movie director. However, it will acquaint you with the features of
the Windows Media Player, or simply Media Player for short. We’ll discuss what the Media Player can do as
an introduction because many developers are unaware of just where Microsoft has taken the Media Player.
Afterward, we’ll look at several ways in which your applications can interact with the Media Player to
produce effects you might not have considered in the past.

A Quick Overview of the Media Player

Some developers haven’t ever tried the Media Player, probably because it looked drab and uninteresting at the
outset. Even the version of the Media Player that originally shipped with Windows 2000 lacked appeal.
Microsoft has added so many improvements to the Media Player that you’ll hardly recognize it the first time
you see it. Figure 11.1 shows a typical example of this utility with a CD loaded. Notice that the Media Player
automatically identifies the CD and provides track information. The following sections describe how to use
the Windows Media Player.

Note For those of you who were looking for the venerable CD Player with its interesting quirks, this particular
utility was not included with Windows XP. You’ll find that the Windows Media Player does a far better
job than the CD Player could ever do. However, if you absolutely must have the CD Player to feel
comfortable, the version from Windows 2000 works just fine under Windows XP.

232

Figure 11.1: The Windows Media Player sports both new looks and updated features.

This section of the chapter provides you with a general overview of the capabilities of the Media Player.
You’ll learn about general operation and some of the special features that it provides, including Internet
Support. However, given that this is a programming book, I’ll leave it up to you to learn about some of the
more interesting features that it would be hard to use in development. For example, the Media Player supports
audio CD creation—a feature we won’t discuss in this chapter. Once you complete this section, you might
find that you want to give the Media Player a second look as a new source of entertainment for your system as
well as a means to make your applications more usable.

The purpose of this section is to show you the capabilities of the Media Player from a user perspective so that
you can appreciate the opportunities it provides to you as a developer. If you’re already familiar with the
Media Player, you can probably skip this section and get right into the programming examples. All of the
sections that follow do have developer−oriented counterparts and we won’t spend a lot of time on this
overview. Consider this section one of the fun parts of the book.

Windows Media Player General Operation

You can adjust every aspect of your Media Player experience. For example, you can adjust the graphic in the
center of the display. Click Select Visualization or Album Art (the button with the asterisk in the lower−left
corner of the display area). You’ll see a list of visualizations, plus an Album Art option. Interestingly enough,
Media Player was able to display the album art from quite a few of my CDs, even though I didn’t supply this
information to the computer, nor did I supply any other information about the CD. Choose the visualization
you want to see (or the album cover). If you choose a visualization, you’ll see two arrow buttons next to the
visualization button. Click these arrows to see different versions of that visualization. If you want to see your
visualization full screen, click View Full Screen in the lower right corner of the display area. This is the
button with a window in the center and four arrows pointing outward from the edges of the window.

Tip If you choose the album art visualization and then click on the album art, a copy of
Internet Explorer will open. You’ll go to the http://windowsmedia.com/ site where
you’ll see a list of all the albums available by the same group. The site will help you
explore these other options. For example, you can play samples from many of the
albums to determine if you’d like to hear more. You can buy the albums directly online
if desired with a few additional clicks. (The site links to CD−NOW.)

At the bottom of the screen, you’ll see a set of 10 controls. These controls allow you to control the current
position in the CD using pause, stop, next song, previous song, a position−seeking pointer, a rewind function,

Windows Media Player General Operation

233

and a fast forward function. You can also control the volume of the music and mute it when necessary. The
final button, Switch to Skin Mode, changes the appearance of the Windows Media Player to the selected skin.
Figure 11.2 shows just one of many skins you can choose.

Figure 11.2: Select the skin that suits your personal preferences.

Yes, that’s a Picasso−like picture and all of the painted buttons do work. You’ll find quite a few skins for your
Media Player, and I anticipate that people will want to create their own. In fact, one of the examples in this
chapter will demonstrate how you can create skins for users of your applications. This feature has a lot of
uses, including marketing your company. A well−designed skin could advertise your services or simply act as
a means for people to remember your company name.

Three of the four buttons at the top of the display control the window display. The Show/Hide Menu Bar
button controls the window surrounding the Windows Media Player. Normally, this window is invisible so
you can see the effect of the skin. The Show/Hide Equalizer and Settings in Now Playing button displays a
window immediately below the visualization window shown in Figure 11.1. This new window can display
SRS WOW effect, graphic equalizer settings, video settings, media information, captions, and lyrics. The
Show/Hide Playlist in Now Playing button shows a list of the songs you plan to play. Double−clicking a song
in this list automatically changes the player to that song. The fourth button at the top, Turn Shuffle On/Off,
automatically selects tracks at random when set to on. This means the CD won’t play end−to−end; it will
continuously play random selections.

The playlist has a lot more to offer than allowing you to select the tracks on the CD and add lyrics. The
context menu contains options to play the selected song, enable sections, and disable selections. The Media
Player will skip a selection that you have disabled when playing the CD in random or sequential order. The
Edit option allows you to change the name of the song in the playlist. You can also change the order of songs
in the list using the Move Up and Move Down options. The context menu contains several other options that
we’ll discuss as part of performing other tasks.

Internet Content

We haven’t discussed many of the buttons on the left side of the Windows Media Player yet. You’ll find that
several of them enable you to find media on the Internet. The main Internet button is Media Guide. Click this
and you’ll go to WindowsMedia.com. This is Microsoft’s main site for all things media.

The Radio Tuner feature also relies on the Internet. You click this option and after a few seconds, Windows
Media Player displays the radio station page of WindowsMedia.com. Select a radio station and Windows
Media Player will begin streaming content from it.

Internet Content

234

The Internet content functionality provided by the Media Player also has potential for developers. For
example, this option could help you create better tutorials that wouldn’t suffer from the problem of being out
of date with patches for your application. Because the user would download the tutorial from the Web site
each time it was needed, the content would always provide the latest information about your application. The
same approach works for help desk and other support needs. You could even add to the application media
features that would change over time to meet specific user needs or even provide a mood. For example,
consider an application that would automatically dress itself up for Christmas or New Years.

Using the Media Library

The Media Library helps you organize all your media. The first time you select it, you’ll see a dialog box that
asks if you want to search your hard drive for media. Click Yes and Windows Media Player will begin the
search. Of course, you can always conduct the search later using the Tools Ø Search for Media Files option
(you can also press F3). After you click Yes, Windows Media Player will ask where to search for media on
your system. However, unless you click Advanced, you won’t see the additional options shown in Figure
11.3.

Figure 11.3: The Windows Media Player helps you find media on your system.

Select the search criteria you want to use for searching. The default settings may not work in all cases. For
example, you may want to keep track of your sound bites in the library. The size options may prevent this by
excluding files that are too small yet fit within the sound bite category.

Notice that the default search criteria doesn’t include system folders. If you want to include
Microsoft−supplied media in your list, you’ll want to check the Include System Folders option. In some cases,
you might want to add files that you play to the media library even if they’re smaller than the limits you set.
The Search for Media Files dialog box also includes an option to address this concern. Once you’re happy
with the search settings, click Search and Windows Media Player will begin searching your system for media.
After the Windows Media Player finds all of your media, you’ll need to click Cancel to exit the Search for
Media Files dialog box.

The Media Library will categorize your audio and video data using a hierarchical format like the one shown in
Figure 11.4. Notice that this library shows the video clips by author. The other category selections present the
data in other ways.

Using the Media Library

235

Figure 11.4: Use the Media Library to organize your media selections.

Creating a database of your media selections makes it easier to see what you have and to work with the data.
You can play everything in your library. The Windows Media Player also allows you to copy the data to an
audio CD or work with it in other ways. For example, you can use this screen to create and manage playlists.

Note Some of the elements on the left side of the hierarchical list don’t support a context menu. The
choices for the selection normally appear at the top of the window, so you need to highlight the
element before you can do anything with it. For example, if you want to create a new playlist,
you have to highlight My Playlists and then click New Playlist at the top of the window.

Displaying a Configuration Dialog Example

Many of the multimedia devices on your system have configuration dialogs. The configuration data affects the
quality of the device output, as well as its capabilities in many situations. In some cases, you might want the
user to configure a device before using it to play a sound or perform some other multimedia task. The
configuration is important because you want to provide the user with the best possible multimedia experience.
When you want to perform this type of task, you need to work with the driver directly, which means opening a
driver handle using the OpenDriver() function.

Obtaining a device handle sounds almost too easy when you first consider it. You use the OpenDriver()
function, which accepts three inputs. The first argument is mandatory. It’s the device driver name. The second
argument is optional and usually unnecessary for modern drivers. It defines the location of the driver
information in the registry. The third argument is device−driver specific. Only supply this information if the
vendor documentation for the driver requires it.

The main problem with the OpenDriver() function is finding the required device driver name, especially if
you aren’t privy to the vendor documentation (which few of us are). The Platform SDK documentation
provides a hint, but only a small hint when it tells you that the default location is the Drivers32 key. The
actual location of this information is the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Drivers32 key in most cases. Figure 11.5 shows that there are two wave devices in this
case: wave and wave1. To determine which device to use, you’d need to match the driver to a specific piece of
hardware using the entries in the Device Manager.

Displaying a Configuration Dialog Example

236

Figure 11.5: The registry provides the device names you need to use with the OpenDriver() function.

The example application shows how to open a device, display the associated configuration dialog, and then
close the device so another application can access it. Listing 11.1 shows the code that you’ll need. You’ll find
the source code for this example in the \Chapter 11\C#\ConfigDlg and \Chapter 11\VB\ConfigDlg folders of
the CD.

Listing 11.1: Displaying a Device Configuration Dialog

// This function opens a device for use. There are two forms this
// function can take. The first form should only include the driver
// name. Set the IntPtr value to IntPtr.Zero and the lParam to 0. The
// second form can include just a section name or both a section name
// and an lParam.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern IntPtr OpenDriver(String lpDriverName,
 IntPtr NoSectionName,
 Int32 NoParam);

[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern IntPtr OpenDriver(String lpDriverName,
 String lpSectionName,
 Int32 lParam);

// This function sends a message to the driver. The message will
// normally require one or two lParam values.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 SendDriverMessage(IntPtr hdrvr,
 UInt32 msg,
 Int32 lParam1,
 Int32 lParam2);

// Use this enumeration to define which driver message to send.
public enum DrvMsg : uint
{
 DRV_LOAD = 0x0001,
 DRV_ENABLE = 0x0002,
 DRV_OPEN = 0x0003,
 DRV_CLOSE = 0x0004,
 DRV_DISABLE = 0x0005,
 DRV_FREE = 0x0006,
 DRV_CONFIGURE = 0x0007,

Displaying a Configuration Dialog Example

237

 DRV_QUERYCONFIGURE = 0x0008,
 DRV_INSTALL = 0x0009,
 DRV_REMOVE = 0x000A,
 DRV_EXITSESSION = 0x000B,
 DRV_POWER = 0x000F,
 DRV_RESERVED = 0x0800,
 DRV_USER = 0x4000
}

// This structure is used with DRV_CONFIGURE the message.
public struct DRVCONFIGINFO
{
 public Int32 dwDCISize;
 public String lpszDCISectionName;
 public String lpszDCIAliasName;
}

// This function closes a driver handle previously opened using the
// OpenDriver() function. Don’t pass anything for the lParam values
// unless the driver documentation requests it.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 CloseDriver(IntPtr hdrvr,
 Int32 lParam1,
 Int32 lParam2);

private void btnTest_Click(object sender, System.EventArgs e)
{
 IntPtr hDriver; // Handle to the driver.
 Int32 Result; // Results of a call.
 DRVCONFIGINFO DCI; // The driver configuration data.
 IntPtr DCIPtr; // Pointer to the DCI

 // Open the driver handle.
 hDriver = OpenDriver(txtDevice.Text, IntPtr.Zero, 0);

 // Check for errors.
 if (hDriver == IntPtr.Zero)
 {
 MessageBox.Show("Couldn’t obtain driver handle!",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

 // Determine whether the device supports a capabilities
 // dialog box.
 Result = SendDriverMessage(hDriver,
 (UInt32)DrvMsg.DRV_QUERYCONFIGURE,
 0,
 0);

 // Check for a configuration dialog.
 if (Result == 0)
 {
 MessageBox.Show("No configuration dialog available!",
 "Application Result",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 CloseDriver(hDriver,0,0);

Displaying a Configuration Dialog Example

238

 return;
 }

 // Display the configuration dialog.
 DCI = new DRVCONFIGINFO();
 DCI.dwDCISize = Marshal.SizeOf(DCI);
 DCIPtr = Marshal.AllocHGlobal(DCI.dwDCISize);
 Marshal.StructureToPtr(DCI, DCIPtr, true);
 Result = SendDriverMessage(hDriver,
 (UInt32)DrvMsg.DRV_CONFIGURE,
 0,
 DCIPtr.ToInt32());

 // Free the allocated memory.
 Marshal.FreeHGlobal(DCIPtr);

 // Close the driver handle.
 CloseDriver(hDriver, 0, 0);
}

As you can see, the example provides for two forms of the OpenDriver() function—the form you use depends
on the needs of the device driver. However, the first form works, in most cases, because the driver names are
stored in the Drivers32 key and most drivers don’t require any additional input.

The SendDriverMessage() function requires at least two pieces of input: the handle of the device and a
message value. The SendDriverMessage() function can also accept one or two lParam values to send as part
of the message. We’ll see later in the code that these two values are often optional and that you must pay
attention to the placement of values that are required. The DrvMsg enumeration contains all of the messages
that you can send to a device driver. Generally, it’s better to create a single enumeration that covers all
possibilities than to create a specific enumeration for each potential use. The SendDriverMessage() function
only works with the following messages:

DRV_CONFIGURE•
DRV_QUERYCONFIGURE•
DRV_INSTALL•
DRV_REMOVE•

One of the messages we’ll work with in this example does require additional information in the form of the
DRVCONFIGINFO structure. The DRV_CONFIGURE message tells the device driver to display its
configuration dialog. The requestor must provide the size of the data structure as a minimum. The data
structure also contains entries for a custom section of the registry (if the driver isn’t in the Drivers32 section)
and an alias name for the driver. Neither of these two entries is required, even if you supply the structure.

As with all other forms of handle access, you must close the driver before the application exits. The effects of
not doing so, in this case, are especially noteworthy because they’re so severe. In most cases, the user will
lose access to the device. In addition, the application will lose access to the handle memory, causing a small
memory leak within Windows. Finally, in several cases, the loss of device access could result in system
failure. Closing the handle isn’t an option or something to forget in this situation. Unfortunately, the .NET
Framework can’t recover for you, so it’s up to the developer to ensure proper application execution.

The code for this example begins by opening the driver. It examines the handle for a null value. If the value is
null, it’s more than likely that the system or another application has already opened the device. Of course, you
could have supplied a nonexistent device name as well, so it’s important to check spelling and capitalization if

Displaying a Configuration Dialog Example

239

you receive the same error more than once. The application will display an error message and exit the method
when it receives a null value.

Not every device provides a configuration dialog, so the code uses the SendDriverMessage() function to
output a DRV_QUERYCONFIGURE message to the driver. In this case, we don’t need to supply any
additional information. If the driver returns 0, then it doesn’t provide support for a configuration dialog and
the method exits. Notice that you must free the device handle before the method exits.

The code can finally display the configuration dialog. However, to do this, it must provide a pointer to a
DRVCONFIGINFO data structure, even if the structure is blank. Of course, this brings up the question of how
to pass the data structure to a message when the message only accepts an integer as input. The code shows one
technique for accomplishing this task. It creates the data structure and fills in the one required field that
contains the size of the structure. The code then allocates an IntPtr that points to unmanaged memory of the
same size of the data structure. At this point, the Marshal.StructureToPtr() method can convert the managed
memory into a pointer to unmanaged memory. Finally, during the SendDriverMessage() call, the code
converts the pointer to an Int32 value. At this point, the device driver will display a configuration dialog box
similar to the one shown in Figure 11.6.

Figure 11.6: The device driver will display its configuration dialog box after it receives the
DRV_CONFIGURE message.

In this case, I chose the msacm.imaadpcm device to display the Microsoft IMA ADPCM CODEC
Configuration dialog box, which adjusts the Interactive Multimedia Association (IMA) Adaptive Differential
Pulse Code Modulation (ADPCM) compression/decompression (CODEC) module. The Microsoft Audio
Compression Manager (MSACM) actually includes several device entries in the Drivers32 section of the
registry and you’ll find the associated code in the MSACM32.DLL file. You might wonder why anyone
would adjust this feature. In this case, it’s a matter of performance versus resource usage. A higher
compression rate requires fewer resources and transfers better over slow media such as a modem connection.
On the other hand, a lower compression rate performs better on slower machines with connections to a
high−speed local network.

The final two steps of the example include freeing the unmanaged memory and freeing the device handle.
Both steps are essential to free resources that the Garbage Collector can’t work with. We’ve covered these two
steps quite a few times in the book already, so there’s no need to go into detail again.

Playing Sound Files Example

It’s interesting to play a sound stored in a wave (WAV) file on your machine. Of course, if you use the
PlaySound() or the associated sndPlaySound() function, there’s little control over the sound. You can play it,
but that’s about it. Even the flags for these two functions are mundane and allow only minimal control over
the sound presentation. In short, if the sound file isn’t defined well, you won’t be able to make any changes to
the presentation using application−programming techniques.

Playing Sound Files Example

240

Note The example in this section assumes some knowledge of the Media Player sound capability. We’ve
already looked at one such example as part of the MakeSound example in Chapter 1. Be sure to look at
that example before you begin working with the example in this section.

There are two other sound−related functions that you need to know about. The first set begins with aux and
the second set begins with wave. As the names suggest, the functions work with the auxiliary or the wave
device. The wave functions provide far better control than the aux functions, so we’ll discuss the wave
functions in this section of the chapter.

The wave functions are divided into input and output devices. In fact, some functions are repeated for both
input and output devices. For example, you need to use the waveInGetDevCaps() function to get the device
capabilities of an input device and the waveOutGetDevCaps() function to get the device capabilities of an
output device. The two functions aren’t interchangeable, so you need to use the correct function for the type of
device you want to query.

A single system might have more than one wave device, so the wave functions make an allowance for this
issue as well. You need to provide a device identifier of some sort as input to the wave functions. The function
will accept an actual identifier or the handle of an open wave device of the correct type. The handle option can
prove tricky because some devices can act as both input and output devices. In addition, the system
automatically opens the handles for common devices. Sound cards fall into this category—they’re used for
input and output and also provide common services so the operating system opens them automatically in most
cases. It’s essential to provide the correct handle for the wave function call that you want to make.

Determining Device Capabilities

Before we make a sound, let’s look at a simpler example. Listing 11.2 shows the technique you can use to
determine the characteristics of the wave devices. The example doesn’t go through the usual flag
machinations because we’ve seen that technique in many examples in the past. Rather, this example exposes
you to some new techniques that we haven’t explored. You’ll find the flag definitions in the MMSystem.H
file and the manufacturer and product identifiers in the MMReg.H file. The source code for this example
appears in the \Chapter 11\C#\WaveCaps and \Chapter 11\VB\WaveCaps folders of the CD.

Listing 11.2: A Technique for Detecting Wave Device Capabilities

// This function obtains the number of wave output devices.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern UInt32 waveOutGetNumDevs();

// This function determins the capabilities of the specified
// wave output device.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 waveOutGetDevCaps(IntPtr uDeviceID,
 ref WAVEOUTCAPS pwoc,
 UInt32 cbwoc);

// Use this structure to hold the device capabilities data.
[StructLayout(LayoutKind.Explicit, CharSet=CharSet.Unicode)]
public struct WAVEOUTCAPS
{
 [FieldOffset(0)] public Int16 wMid;
 [FieldOffset(2)] public Int16 wPid;
 [FieldOffset(4)] public MMVERSION vDriverVersion;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst=MAXPNAMELEN)]
 [FieldOffset(8)] public String szPname;

Determining Device Capabilities

241

 [FieldOffset(72)] public Int32 dwFormats;
 [FieldOffset(76)] public Int16 wChannels;
 [FieldOffset(78)] public Int16 wReserved1;
 [FieldOffset(80)] public Int32 dwSupport;
};

// This is the maximum size of the path name data.
public const Int32 MAXPNAMELEN = 32;

// This data structure contains the version information.
public struct MMVERSION
{
 public Byte bMinor;
 public Byte bMajor;
 public Int16 Reserved;
}

private void btnTest_Click(object sender, System.EventArgs e)
{
 UInt32 NumDevs; // The number of output devices.
 WAVEOUTCAPS WaveData; // Wave Device Capabilities
 UInt32 CapsSize; // Wave data structure size.
 Int32 Counter; // Loop counter variable.
 StringBuilder Output; // Output string.

 // Obtain the number of output devices.
 NumDevs = waveOutGetNumDevs();

 // Check the capabilties of each device.
 for (Counter = 0; Counter < NumDevs; Counter ++)
 {
 // Determine the device capabilities information.
 WaveData = new WAVEOUTCAPS();
 CapsSize = (UInt32)Marshal.SizeOf(WaveData);
 waveOutGetDevCaps(new IntPtr(Counter),
 ref WaveData,
 CapsSize);

 // Display the information on screen.
 Output = new StringBuilder();
 Output.Append("Device Number: " + Counter.ToString());
 Output.Append("\r\nName: " + WaveData.szPname);
 Output.Append("\r\nVersion: " +
 WaveData.vDriverVersion.bMajor.ToString() + "." +
 WaveData.vDriverVersion.bMinor.ToString());

 // Show the information on screen.
 MessageBox.Show(Output.ToString(),
 "Device Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
}

The function calls in this example follow the standard procedure. We use [DllImport] as usual and define the
function arguments. Theoretically, we could make the return type for waveOutGetNumDevs() an Int32
instead of a UInt32, but this could lead to problems when working with large numbers of devices. Generally,
you should use whatever data types the Platform SDK documentation defines.

Determining Device Capabilities

242

The WAVEOUTCAPS data structure looks like something from Mars compared to the other examples in the
book. You’ll find that the data structures for multimedia are exceptionally picky and this is one of them.
Notice that we’re using LayoutKind.Explicit instead of LayoutKind.Sequential in this case. In general, you
want to avoid using LayoutKind.Explicit because it requires a lot more work and the potential for error is very
high. However, LayoutKind.Explicit also gives you precise control over the layout of the data structure and
we need that control in this situation. The character set is specifically set to CharSet.Unicode instead of
CharSet.Auto. The structure could experience data corruption in some environments if you don’t make this
change.

The WAVEOUTCAPS data structure fields also look quite strange. Whenever you use the
LayoutKind.Explicit option, you must also use the [FieldOffset] attribute for every field in the structure. The
[FieldOffset] attribute defines the precise position of every data field within the structure. Using the
[FieldOffset] attribute also means exercising extreme care in determining the data element sizes.

Notice that we’ve defined MMVERSION as a data structure. The MMSystem.H file defines this value as a
UINT. However, the Platform SDK documentation is quite confusing on the topic because it references the
value as two BYTES. The MMVERSION data structure adds clarity to the situation by making the use of the
various data clear.

There’s one additional surprise in the WAVEOUTCAPS data structure. Notice that the szPname field is
defined as type string. However, if you look at both the documentation and the C/C++ headers, you’ll notice
that this field is actually a TCHAR array. In some cases, you can use the [MarshalAs] attribute, as shown in
the listing, to make the Win32 API think you’ve sent a TCHAR array and not a regular string. Notice the use
of the UnmanagedType.ByValTStr option. This option is a requirement to make this solution work. You must
also provide a SizeConst that matches the C/C++ header values.

Note You can’t combine the <FieldOffset> attribute with the <MarshalAs(UnmanagedType.ByValTStr,
SizeConst:=MAXPNAMELEN)> attribute in Visual Basic. The lack of this support makes this example
more error prone. In this particular case, using a sequential layout with the appropriate <MarshalAs>
attribute works, but there are situations in which the example will fail. For example, on one test
machine, the developer didn’t provide a properly formatted name string, resulting in an error. See the
example Visual Basic code on the CD for complete details.

The code for this example begins by determining the number of output wave devices. Notice that this is the
waveOutGetNumDevs() function, so it won’t return anything else. The number of devices is used to
determine the number of times the code will call waveOutGetDevCaps(). Each call to waveOutGetDevCaps()
will use the current Counter value as the device identifier, as shown in the code.

As previously mentioned, the code doesn’t spend a lot of time deciphering the various field values returned by
the waveOutGetDevCaps() call. However, it does output the name and version as shown in Figure 11.7.
Generally, you’ll find that the wave device information will tell you basic device capabilities, device type, and
device driver vendor name, but not much else. Any special device capabilities remain hidden unless you write
code directly to the device or use other technology such as DirectX. However, this code will tell you enough
to write code for simple games, most business applications, and even some multimedia applications.

Determining Device Capabilities

243

Figure 11.7: The example application outputs the device name and version number.

Opening a File

Opening a multimedia file is actually one of the harder parts of using it. You’ll find that once you’ve
successfully opened and read the file, playing it and interacting with it in other ways is relatively easy. Part of
the problem is the complexity of the file configuration—the file contains several components that you need to
interact with as part of opening the data for use. Listing 11.3 shows the minimum code you’ll need to open a
multimedia file. Note that the listing doesn’t include any of the function definitions, structures, or
enumerations—we’ll discuss these elements later in the chapter and you’ll find the complete source code on
the CD. You can find the source code for this example in the \Chapter 11\C#\PlayWave and \Chapter
11\VB\PlayWave folders of the CD.

Listing 11.3: Opening a Multimedia File

// This variable contains the name of the file to play.
private string File2Open;

// This variable contains a pointer to the wave device.
private HWAVEOUT WaveHandle;

// These variables contain the data format of the WAV file.
private WAVEFORMATEX WF;
private IntPtr WFPointer;

// This variable is a pointer to the actual WAV data.
private IntPtr WaveData;

// File bytes to read or the number of bytes previously read.
private Int32 BytesToRead;

private void btnOpen_Click(object sender, System.EventArgs e)
{
 OpenFileDialog Dlg = new OpenFileDialog(); // File Open Dialog
 Int32 Result; // Call result.
 IntPtr MMIOHandle; // MMIO file handle.
 MMCKINFO Parent; // Root node.
 MMCKINFO Child; // Child node.

 // Set up the File Open Dialog
 Dlg.Filter = "Wave Format File (*.wav)|*.wav";
 Dlg.DefaultExt = ".wav";
 Dlg.Title = "Open WAV File Dialog";

 // Display the File Open Dialog and obtain the name of a file and
 // the file information.
 if (Dlg.ShowDialog() == DialogResult.OK)
 {
 // Set the file to open.

Opening a File

244

 File2Open = Dlg.FileName;

 // Open the requested file so we can determine the
 // data format.
 MMIOHandle = mmioOpen(File2Open,
 IntPtr.Zero,
 MMIOOpenFlag.MMIO_READ |
 MMIOOpenFlag.MMIO_ALLOCBUF);

 // Check the results.
 if (MMIOHandle == IntPtr.Zero)
 {
 MessageBox.Show("Error opening file.",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

 // Create a parent node. Verify that this is actually a
 // WAVE file.
 Parent = new MMCKINFO();
 Parent.fccType = mmioFOURCC(‘W’, ‘A’, ‘V’, ‘E’);
 Result = mmioDescend(MMIOHandle,
 ref Parent,
 IntPtr.Zero,
 MMIODescendFlags.MMIO_FINDRIFF);

 // Check the results.
 if (Result != MMSYSERR_NOERROR)
 {
 // Display an error message.
 MessageBox.Show("This is not a real WAV file.",
 "File Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Close the open MMIO file handle.
 mmioClose(MMIOHandle, 0);

 return;
 }

 // Create the Child node. Locate the formatting
 // information within the file. This call will also
 // fill both Parent and Child nodes with additional
 // information.
 Child = new MMCKINFO();
 Child.ckid = mmioFOURCC(‘f’, ‘m’, ‘t’, ‘ ‘);
 Result = mmioDescend(MMIOHandle,
 ref Child,
 ref Parent,
 MMIODescendFlags.MMIO_FINDCHUNK);

 // Check the results.
 if (Result != MMSYSERR_NOERROR)
 {
 // Display an error message.
 MessageBox.Show("Unable to find formatting data.",
 "File Error",
 MessageBoxButtons.OK,

Opening a File

245

 MessageBoxIcon.Error);

 // Close the open MMIO file handle.
 mmioClose(MMIOHandle, 0);

 return;
 }

 // Read the data from the file.
 BytesToRead = Child.cksize;
 WF = new WAVEFORMATEX();
 WFPointer = Marshal.AllocHGlobal(BytesToRead);
 Marshal.StructureToPtr(WF, WFPointer, true);
 if (mmioRead(MMIOHandle, WFPointer, BytesToRead) != BytesToRead)
 {
 // Display an error message.
 MessageBox.Show("File is truncated.",
 "File Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Free the pointer memory.
 Marshal.FreeHGlobal(WFPointer);

 // Close the open MMIO file handle.
 mmioClose(MMIOHandle, 0);

 return;
 }

 // Convert the pointer to a structure.
 WF = (WAVEFORMATEX)Marshal.PtrToStructure(
 WFPointer,
 typeof(WAVEFORMATEX));
 Marshal.FreeHGlobal(WFPointer);

 // Open the wave device for use.
 Result = waveOutOpen(out WaveHandle,
 WAVE_MAPPER,
 ref WF,
 0,
 0,
 0);

 // Check the result.
 if (Result != MMSYSERR_NOERROR)
 {
 // Display an error message.
 MessageBox.Show("Error opening wave device.",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Close the open MMIO file handle.
 mmioClose(MMIOHandle, 0);

 return;
 }

 // Ascend from the format level of the file.
 Result = mmioAscend(MMIOHandle, ref Child, 0);

Opening a File

246

 // Locate the data area of the file.
 Child.ckid = mmioFOURCC(‘d’, ‘a’, ‘t’, ‘a’);
 Result = mmioDescend(MMIOHandle,
 ref Child,
 ref Parent,
 MMIODescendFlags.MMIO_FINDCHUNK);

 // Check the results.
 if (Result != MMSYSERR_NOERROR)
 {
 // Display an error message.
 MessageBox.Show("Unable to find waveform data.",
 "File Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Close the open MMIO file handle.
 mmioClose(MMIOHandle, 0);

 return;
 }

 // Read the data from the file.
 BytesToRead = Child.cksize;
 WaveData = Marshal.AllocHGlobal(BytesToRead);
 if (mmioRead(MMIOHandle, WaveData, BytesToRead) != BytesToRead)
 {
 // Display an error message.
 MessageBox.Show("File is truncated.",
 "File Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 // Free the pointer memory.
 Marshal.FreeHGlobal(WaveData);

 // Close the open MMIO file handle.
 mmioClose(MMIOHandle, 0);

 return;
 }

 // Close the open MMIO file handle.
 mmioClose(MMIOHandle, 0);

 // Enable the Play button.
 btnPlay.Enabled = true;
 }
 else
 {
 // If the user didn’t select anything, return.
 return;
 }
}

This example requires quite a bit of code just to open the file, but that’s really the hardest part of the task. The
code begins by creating several modulewide variables. Most of these variables provide general pointers to the

Opening a File

247

data used by the rest of the application, so they’re legitimately modulewide. I’ve attempted to keep the
number of these variables small.

The btnOpen_Click() method begins by creating an Open WAV File Dialog that enables the user to select a
file from the drive, as shown in Figure 11.8. This is one of the few standard pieces of code in the example, but
a necessary piece in this case. If the user selects a file, then the rest of the code will open it. Otherwise, the
btnOpen_Click() method exits without doing anything.

Figure 11.8: The application provides a custom dialog box for selecting the WAV file.

Once the code has a filename to use, it uses the mmioOpen() function to open the file. The multimedia
input/output (mmio) functions enable you to open, read, write, and close files for use with multimedia
functions. We’ll see later in this listing that the mmio functions perform specific multimedia tasks. You
should never use the handle returned by an mmio function for any purpose other than multimedia calls.

The next piece of code will look rather odd unless you know a little about WAV files. The multimedia chunk
information data structure, MMCKINFO, contains information about the content of a multimedia file—a
WAV file in this case. However, to gain access to this information, we need to overcome several hurdles. The
first hurdle is the mmioFOURCC() function. In all actuality, the mmioFOURCC() function is a Visual C++
macro. Unless you want to write a special wrapper DLL just for this macro, you’ll need to translate it. The
following code shows one example of how you can translate a bit−manipulation macro into something that C#
can work with:

// This function mimics the Visual C++ macro of the same name.
public UInt32 mmioFOURCC(Char ch0, Char ch1, Char ch2, Char ch3)
{
 UInt32 Temp; // The temporary variable.

 // Convert each of the input characters and
 // bit shift as needed.
 Temp = Convert.ToUInt32(ch0);
 Temp = Temp + (Convert.ToUInt32(ch1) * 0x100);
 Temp = Temp + (Convert.ToUInt32(ch2) * 0x10000);
 Temp = Temp + (Convert.ToUInt32(ch3) * 0x1000000);

 return Temp;
}

As you can see, the code accepts four Char values as input and outputs them as a packed UInt32 value. The

Opening a File

248

original macro bit shifts the four values using Visual C++ macro code, which won’t work in C#. Of course,
this begs the question of what a FOURCC value is. A FOURCC value stands for four−character code.
Microsoft and other vendors used FOURCC values during the initial work in creating specifications for
common files such as the WAV file. Figure 11.9 shows an example of the FOURCC values in a WAV file
that I opened in the DEBUG.EXE application.

Figure 11.9: WAV files differentiate file areas using a FOURCC entry.

Notice the key words RIFF, WAVE, fmt (with a space at the end), and data in the file. Each of these key
words defines a data area with a particular type of data. The resource interchange file format (RIFF) heading
tells any application opening the file that this is a standardized resource file. The WAVE entry tells what type
of RIFF data the file contains—wave (digitized) audio. The fmt entry marks the beginning of the format data,
while the data entry marks the beginning of the digitized sound. Understanding these key elements will make
the code a lot easier to understand.

The code uses the MMCKINFO structure to tell the mmioDescend() function which part of the file to open.
However, if you don’t open the file in an organized manner, you’ll quickly become lost. The mmioDescend()
function can accept just a single MMCKINFO structure for a root node or two MMCKINFO structures for a
child node. The root node for a WAVE file is the WAVE entry shown in Figure 11.8.

After the code finds the root entry, it needs to locate the fmt entry. The fmt entry contains information about
the structure of the file. To open a wave device, you need to know that it can play the format the file is in. The
second call to the mmioDescend() function fills out both the Child and Parent structures.

You’ll remember that earlier I discussed wave functions, and we haven’t seen any yet. The problem is that the
wave functions require information about the WAV file and its format. The WAVEFORMATEX structure is
the key to gaining that information. However, we can’t access the information directly because the
mmioRead() function used to read the data only works with unmanaged memory. As you can see in the
listing, the code has to create the WAVEFORMATEX structure variable, WF, and then create a pointer to that
structure named WFPointer by allocating memory using the Marshal.AllocHGlobal() method and creating an
association using the Marshal.StructureToPtr() method. The code uses the mmioRead() function to access the
required data. Of course, now we have to place the data pointed at by WFPointer into the WF structure using
the Marshal.PtrToStructure() method. Finally, the code frees the memory used by WFPointer.

Note Visual Basic developers will need to use the GetType(WAVEFORMATEX)
function in place of the typeof(WAVEFORMATEX) function shown in the listing
for the Marshal.PtrToStructure() method. The two techniques normally produce
functionally equivalent output. However, there is a chance of compatibility
problems, so Visual Basic developers will need to exercise care when using the
Marshal.PtrToStructure() method.

Opening a File

249

At this point, the code can finally open a wave device using the waveOutOpen() function. The code uses the
WAVE_MAPPER constant instead of a standard device identifier so that Windows can choose the best
multimedia device to play the sound based on the sound characteristics. Notice that the function doesn’t
initialize the WaveHandle argument—it’s declared as an out rather than a ref. Unlike most of the handles
we’ve used so far in the book, the WaveHandle is actually a data structure containing a single variable, as
shown here:

// This structure takes the place of the DECLARE_HANDLE(HWAVEOUT)
// macro for Visual C++.
public struct HWAVEOUT
{
 public Int32 Unused;
}

Note Visual Basic developers will need to use <Out()> attribute rather than the out keyword used for C# with the
waveOutOpen() function. In this case, the two techniques have the same effect. However, the two techniques
aren’t exactly the same, so Visual Basic developers will need to exercise care in the use of the <Out()> attribute.
See the
ms−help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfSystemRuntimeInteropServicesOutAttributeClassTopic.htm
help topic for additional details. See the ms−help://MS.VSCC/MS.MSDNVS/csref/html/vclrfOut.htm help topic
for a comparison of the two keywords. The <Out()> attribute is only used with COM and P/Invoke scenarios, so
Visual Basic developers can’t use it with managed code as C# developers would use the out keyword.

Visual C++ uses the same data structure. However, it uses a macro to convert a generic data structure into the
specific handle used for the call. We don’t have that option in C#, so you’ll need to create one data structure
for each multimedia use. The Unused field will contain the handle on return from a successful call—a fact that
you can verify by looking in the debugger. Never modify or use this value in any way—treat it as you would
any other handle.

Tip If you specify any type of callback function option as part of the waveOutOpen() function call, you’ll
need to implement the callback function in your code. The management environment doesn’t provide
anything in the way of multimedia handling for you. The reason that this fact is important is that many of
the Visual C++ examples show the code passing a handle to the current window for the callback function.
Using this technique will always cause a .NET application to fail (the application might actually drop
back to the Desktop without displaying any error information). Chapter 5 discusses the techniques for
creating callback functions.

The code has now determined the format of the data within the WAV file and obtained a handle to a wave
device. However, we still don’t have any data to play. Remember that we’re using a tree−like data structure,
so the code has to move back from the fmt node to the root node. The mmioAscend() function performs this
task by using the Child node as a reference point. The code then makes another call to the mmioDescend()
function to obtain access to the data node of the WAV file.

Note The example application will only read small WAV files because it creates a single small buffer.
Generally, if you want to read WAV files larger than 64KB, you need to create multiple buffers and link
them together using the lpNext field of the WAVEHDR described in the next section, "Playing a File."
Theoretically, .NET applications can handle larger files using a single buffer, but the wave functions
tend to act strangely if you pass them a buffer larger than 64KB. Consequently, it’s good to err on the
side of caution in this situation.

At this point, the code creates an unmanaged buffer to hold the WAV data using the Marshal.AllocHGlobal()
method. The mmioRead() function places the WAV file data within WaveData. The final steps are to close
MMIOHandle and enable the Play button. We’ll deallocate the memory held within WaveData later in the

Opening a File

250

application.

Playing a File

Once you have the file open, the rest of the process is easy. The previous section showed how the application
opened a WAV file, determined its format, opened a wave device, and finally read the data from the WAV file
into memory. At this point, everything is ready to actually play the data contained in the WAV file. Listing
11.4 shows one method for playing the wave data. This source code appears in the same files as Listing 11.3.

Listing 11.4: Technique for Playing Wave Data

// This function prepares a WAVE header prior to
// playing the data.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 waveOutPrepareHeader(HWAVEOUT hwo,
 ref WAVEHDR pwh,
 Int32 cbwh);

// This structure contains the WAVE header data.
public struct WAVEHDR
{
 public IntPtr lpData;
 public Int32 dwBufferLength;
 public Int32 dwBytesRecorded;
 public Int32 dwUser;
 public Int32 dwFlags;
 public Int32 dwLoops;
 public IntPtr lpNext;
 public Int32 reserved;
}

// This function writes (plays) the WAVE data.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 waveOutWrite(HWAVEOUT hwo,
 ref WAVEHDR pwh,
 Int32 cbwh);

private void btnPlay_Click(object sender, System.EventArgs e)
{
 WAVEHDR Header; // The WAVE data header.
 Int32 Result; // Results of the call.

 // Prepare the header.
 Header = new WAVEHDR();
 Header.lpData = WaveData;
 Header.dwBufferLength = BytesToRead;
 Result = waveOutPrepareHeader(WaveHandle,
 ref Header,
 Marshal.SizeOf(Header));

 // Check the results.
 if (Result != MMSYSERR_NOERROR)
 {
 // Display an error message.
 MessageBox.Show("Unable to create the WAVE data header.",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

Playing a File

251

 return;
 }

 // Play the data.
 Result = waveOutWrite(WaveHandle,
 ref Header,
 Marshal.SizeOf(Header));

 // Check the results.
 if (Result != MMSYSERR_NOERROR)
 {
 // Display an error message.
 MessageBox.Show("Unable to play the WAVE file.",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 return;
 }

 // Enable the Pause and Stop buttons.
 btnPause.Enabled = true;
 btnStop.Enabled = true;
}

The waveOutPrepareHeader() function creates a header, the WAVEHDR data structure, for the wave device.
Don’t confuse this header with the formatting information data structure we created earlier. The WAVEHDR
data structure contains the format of the data the wave device will play and the actual data in the lpData field.
In addition, this data structure is buffer oriented. Notice the lpNext field. This field contains a pointer to the
next WAVEHDR data structure in a group. As mentioned earlier, you should limit each header to 64KB of
data and preferably less to ensure that the waveOutWrite() function handles it correctly.

Tip Like the PlaySound() function we discussed in Chapter 1, the waveOutWrite() function also supports the
concept of looping. However, you must specify the number of loops as part of the dwLoops field in the
WAVEHDR data structure—there isn’t any way to specify this value as part of the function call. Make
sure you include the WHDR_BEGINLOOP and WHDR_ENDLOOP flags when using looping within
your application. These flags tell Windows which block begins the loop and which block ends the loop.

The btnPlay_Click() function begins by creating the WAVEHDR data structure using the
waveOutPrepareHeader() function. The only two values that the code must include are the number of bytes of
data contained within the data buffer and a pointer to the data buffer itself. All of the other values provide
amplifying information or are used for other purposes. For example, the dwBytesRecorded field is only used
when writing the data to a file after recording it. This call can fail for a number of reasons. However, by the
time you reach this point in the application, the two most common points of failure are corrupted data or a
cbwh value that doesn’t match the actual number of data bytes in the buffer. In some cases, the system could
run out of memory, but this shouldn’t happen when using a modern computer system. The application should
check the validity of the device handle as part of the process of opening the file.

Using the waveOutWrite() function is simple. All you need to provide is the handle of the wave device, a
reference to the header, and the number of bytes in the data buffer. Generally, this call can fail for the same
reasons that the waveOutPrepareHeader() function will.

Playing a File

252

Pausing and Stopping a File

One of the main reasons to go through all of this work is to gain better control over the playback process. If
you use the PlaySound() function, there isn’t any way to pause the file and you can’t control elements such as
the volume. Listing 11.5 finally shows the benefit of using the techniques presented in this chapter. You’ll
find that most of the wave functions from this point on are as easy to use as the ones shown in the listing. In
sum, creating all of the data required to use these functions is difficult, but performing tasks is relatively easy
and you’ve gained a lot of flexibility.

Listing 11.5: Pausing and Stopping a File

// This function pauses the playback.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 waveOutPause(HWAVEOUT hwo);

// This function resumes the playback.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 waveOutRestart(HWAVEOUT hwo);

private void btnPause_Click(object sender, System.EventArgs e)
{
 if (btnPause.Text == "Pause")
 {
 // Pause the current sound.
 waveOutPause(WaveHandle);

 // Set the button text.
 btnPause.Text = "Resume";
 }
 else
 {
 // Resume the current sound.
 waveOutRestart(WaveHandle);

 // Set the button text.
 btnPause.Text = "Pause";
 }
}

// This function stops the playback and resets the data pointer
// to zero (the start of the WAVE file).
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 waveOutReset(HWAVEOUT hwo);

private void btnStop_Click(object sender, System.EventArgs e)
{
 // Stop the playback.
 waveOutReset(WaveHandle);

 // Disable the Pause and Stop buttons.
 btnPause.Enabled = false;
 btnStop.Enabled = false;
}

As you can see from the listing, a single call performs most tasks. It’s important to note that there’s a
difference between pausing and resuming the sound. You must use the waveOutPause() function to pause the

Pausing and Stopping a File

253

sound. However, calling this function a second time won’t do anything. To resume the sound, you must use
the waveOutRestart() function. The only value that either function needs is a handle to the wave device.

Stopping the playback means not only stopping the sound, but also moving the pointer back to the beginning
of the data. When you play the sound again, Windows will begin at the front of the data area. Always use the
waveOutReset() function to stop the playback. As with the other functions in this section, all you need to
supply is a valid handle to the wave device to use this function.

Required Application Cleanup

Almost all of the variables we used in Listings 11.4 and 11.5 came from managed sources. However, there are
two unmanaged variables in use in the application, and you must clean them up before the application exits.
Otherwise, the application will definitely leak memory that Windows won’t recover without a reboot. In
addition, in rare cases, the user could also loose access to the wave device. Generally, it’s a good idea to clean
up the remaining unmanaged variables in the frmMain_Closing() method as shown in Listing 11.6.

Listing 11.6: Cleaning Up the Remaining Variables

// This function closes a wave device.
[DllImport("WinMM.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 waveOutClose(HWAVEOUT hwo);

private void frmMain_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 // Free the pointer memory.
 Marshal.FreeHGlobal(WaveData);

 // Close the open wave device.
 waveOutClose(WaveHandle);
}

As you can see, you need the Marshal.FreeHGlobal() function to free the data memory. Make sure you free
the data memory before you close the wave device or the application might exit unexpectedly. The
waveOutClose() function closes the handle to the wave device.

Using IconForge

I’ve used IconForge from CursorArts Company for quite a few of the examples in the book. After using it for
a while and failing to exhaust the number of features it contains, I can say that it’s probably the best
special−purpose drawing program I’ve tried, especially for the low price ($37.95 plus shipping and handling
at the time of writing). While you can create certain types of icons and cursors using the Visual Studio .NET
IDE, you can’t create all of the types that IconForge provides, and the tools feel cumbersome after you’ve
tried this product. You can download an evaluation product at http://www.cursorarts.com/. There’s also an
evaluation copy of the current product in the \IconForge folder of the CD.

Note I purposely used the evaluation version of the product for this section so that you could see what
the version on the CD includes. The full version of the product provides more extensive features
and also removes all of the evaluation reminder notices.

Required Application Cleanup

254

IconForge provides the features required to create both standard and animated icons, standard and animated
cursors, multiple resolution icons, and icon libraries. You can also use a screen capture as a basis for creating
a new cursor or icon. In short, IconForge provides everything you need to work with cursors and icons. Figure
11.10 shows the display for a typical 32×32−pixel icon. IconForge includes options for 16×16−, 24×24−,
32×32−, 48×48−, 64×64−, 72×72−pixel icons using 2, 16, 256, 24−bit (16.7 million), and 32−bit (16.7 million
Windows XP) colors; you can also use custom sizes for your icons.

Figure 11.10: IconForge helps you create both icons and cursors for your _applications.

As you can see from the screen shot, IconForge provides a vast array of tools compared to the tools you’ll find
in the Visual Studio .NET IDE. Along the bottom you’ll find all of the usual drawing tools, including one that
draws a transparent color. A special Splatter tool draws splatters on the screen. You can use the Nudge tool to
move an icon or cursor element a little at a time. Along the left side of the display are tools that magnify the
icon, display it in preview mode, or add another frame to the icon window.

Some of the most interesting tools provided with IconForge are those that you don’t see immediately. For
example, click the Effects button on the toolbar and you’ll see the wealth of effects shown in Figure 11.11.
Each of the effects changes the set of controls presented in the middle of the display. Change these controls
and you’ll see a change in the appearance of your icon or cursor. The change doesn’t take effect, however,
until you click Apply. Even after you click Apply, clicking Undo will remove the change and return your icon
to its previous state. IconForge will undo an almost unlimited number of changes, so it’s possible to return
your icon or cursor to its original state if you feel the changes don’t provide the impact you thought they
would.

Figure 11.11: Some of the special features that IconForge supports are special effects.

Required Application Cleanup

255

Many of the special effects supported by IconForge fall into the expected category. As with most drawing
programs, you can modify the hue and saturation of your image. Some of the special effects are truly odd and
also quite appealing. For example, the Whirlpool effect makes your icon or cursor appear as if the image
elements had been whirled. There are also special effects called Mirror, Marbleize, and Mosaic that perform
the functions their names imply. The Cloud effect is one of my favorites—it retains the original image but
adds a cloud effect to it. The cloud effect tends to add interest to the image without making it impossible to
figure out.

IconForge doesn’t forget to provide all of the essential tools for cursor and icon drawing. For example, there’s
a hotspot editor you can use to create a hotspot on cursors. One of the more interesting tools is IconWrapper,
shown in Figure 11.12. This tool enables you to add an icon to a file that normally doesn’t accept an icon,
such as a script. There’s an example of a wrapped file in the \Chapter 11\IconForge folder of the CD.

To use the IconWrapper utility with a script, you need to provide the location of the script file, the location of
the icon file, and the location of the WScript.EXE or CScript.EXE file (normally the \Windows\System32
folder). It’s essential to provide the location of the scripting engine because, otherwise, the resulting
executable will simply extract the script file and not execute it. You can also provide the name of an output
EXE file. Click Create and IconWrapper will generate an EXE file that contains the script and icon. The user
will see your icon in Explorer. Whenever the user double−clicks the file, it will execute using the script
engine as it normally does.

Figure 11.12: The IconWrapper utility enables you to add an icon to a file that doesn’t normally accept an
icon.

You can also use IconForge to extract bitmaps, icons, and cursors from other files. Simply use the File Ø
Acquire Icon from Resource command to display the Select an Executable dialog box. Choose the executable
containing the bitmap, icon, or cursor that you want to extract (I’m using Shell32.DLL as an example) and
then click OK. You’ll see the Extract Resource List from Executable File dialog box shown in Figure 11.13.
In this case, the file contains all three categories of resources.

Required Application Cleanup

256

Figure 11.13: Use IconForge to extract bitmaps, icons, or cursors from executable files.

Notice the bodiless man in this screen shot. He spends plenty of time providing you with helpful advice on
using the various application features. Sometimes the advice arrives a little late to use (as in this case), but it’s
always available. In general, you’ll find that the developers of this application have made every attempt to
create an easy−to−use environment. In some respects, the ease−of−use factor might be the best application
feature of all.

Where Do You Go from Here?

This chapter has presented you with information about the Media Player. The first section of the chapter
presented fun facts about the Media Player. Generally, it’s useful to “play” with some of the features that
Windows provides in order to gain a better understanding of what a user has to work with. The Media Player
has gone from awkward utility to full−featured application in the years since Microsoft originally created it.
The Media Player should present new opportunities for you to make your applications user friendly. Of
course, playing with the Media Player for your own needs isn’t a bad idea either. In fact, you’ll probably want
to spend some time learning more about the Media Player because we barely scratched the surface in this
chapter.

This chapter has also demonstrated some new programming techniques for media that you might not have
considered in the past. Windows development doesn’t always have to present an austere environment—it’s
nice to have fun sometimes. The examples in this chapter have shown you both the practical and the fun
aspects of the Media Player. Now it’s up to you to determine if these new techniques fit somewhere in your
organization. You might find that the help desk gets fewer calls when users like the applications they’re using.

Chapter 12 shows you how to fill one of the biggest holes in the .NET Framework, Microsoft Management
Console (MMC) support. MMC is a container application that has absolutely no function other than to host
snap−ins. These snap−ins perform most of the administrative work under Windows 2000 and Windows XP. It
might surprise you to know that many of the Visual Studio .NET beta testers asked for this particular feature
but Microsoft didn’t supply it for whatever reason. Chapter 12 will show you that creating an MMC snap−in
doesn’t mean resorting to an older version of Visual C++. You can create MMC snap−ins in the managed
environment even without the use of a wizard.

Where Do You Go from Here?

257

Chapter 12: Working with Microsoft Management
Console

Overview

The Microsoft Management Console (MMC) is a container application that has no functionality outside of the
snap−ins (COM controls) that it supports. Yet this particular application is the center of most of the
management tools that Microsoft provides with Windows 2000 and Windows XP. In addition, it’s one of the
tools that you’ll see used most often by third−party developers because the MMC environment is so flexible.
As you’ll see later, there’s little doubt that MMC is one of Microsoft’s better ideas because it can support a
wide range of COM control snap−ins—anything you can imagine, in fact.

It’s hardly surprising, then, that one of the most requested feature additions during the Visual Studio .NET
beta test was support for the MMC snap−in. In fact, requests for this feature appeared on all of the
newsgroups—language didn’t seem to matter. Unfortunately, while support for the MMC snap−in appeared in
early versions of the Visual C++ .NET beta, support was eventually dropped even for this language. None of
the other .NET languages have ever supported the MMC snap−in directly. This omission is particularly
difficult to understand considering that MMC is still a major part of Microsoft’s strategy for Windows 2000
and Windows XP administrative tools.

Note One of the reasons that Microsoft support personnel offered for the omission of MMC support is the
complexity of creating an MMC snap−in using the .NET Framework. Indeed, creating an MMC snap−in
would be difficult in any environment without proper library and wizard support, but it can be done.
Visual C++ 6 offered both library and wizard support for this task, making it relatively easy to write an
MMC snap−in.

Writing an MMC snap−in means working intimately with COM. In fact, everything that MMC does is based
on some type of COM interpretability. This chapter will show you how to create a basic MMC snap−in. This
MMC snap−in demonstrates all of the principles you’ll need to create an MMC snap−in of almost any
complexity.

We’ll also create an MMC wrapper DLL that you can use to create basic snap−ins and modify to meet your
specific needs. The examples and the DLL should make it easier for most .NET developers to create an MMC
snap−in as part of the application management strategy. In addition, these examples show how to work with
COM using .NET—something that developers will have to do for the foreseeable future since there are so
many components written for use with COM and most companies can’t afford to throw away such a large
investment.

Note None of the examples in this chapter work with Visual Basic and the CD lacks any Visual Basic source
code for the examples. The main reason for this omission is that Visual Basic presents problems when
you’re working with pointers and some COM concepts. While Visual Basic developers can use most
COM components, the purpose of this section is to provide an advanced COM example and the Visual
Basic environment lacks the proper support.

Using GUIDGen

258

As with all COM objects, MMC snap−ins rely on registry entries to provide information about component
configuration. The use of registry entries means that you need some way to uniquely identify your component,
which means using a globally unique identifier (GUID). Because Visual Studio .NET doesn’t provide this
information automatically as the older, native code versions of the product did, you need to obtain the GUID
manually. Fortunately, you can use a utility named GUIDGen to create the required GUIDs. You can access
this utility using the Tools Ø Create GUID command from within the Visual Studio .NET IDE or from within
the \Program Files\Microsoft Visual Studio.NET\Common7\Tools folder. Figure 12.1 shows how this tool
looks.

Figure 12.1: The GUIDGen utility enables you to create GUIDs for your _components.

Notice that the figure shows option 4, Registry Format, selected. Make sure you always use this format for
components created in C#. Click Copy to place the GUID on the Clipboard. You can then place it within the
application using the following code:

[Guid("B6BBA1A8−6D1C−47f9−A9CC−FAC427315CAF")]
public class MySnapInData : IComponentData, IExtendPropertySheet
{
};

Of course, the class will contain other information. The important piece here is the placement of the [Guid]
attribute. You need to provide GUIDs for both the component and the About dialog. The GUIDs also appear
in the registry entry and serve to identify the snap−in to MMC. Here are the registry entries for the example
MMC snap−in. Note that the entry wraps, in some cases, and that the actual entry would appear on a single
line, as shown in the source code:

REGEDIT4

[HKEY_LOCAL_MACHINE\Software\Microsoft\MMC\Snapins\{B6BBA1A8−6D1C−47f9−
 A9CC−FAC427315CAF}]
"About" = "{BACD4F1D−8338−41ee−9D55−DDECE3D8BBCE}"
"NameString" = "An Example of an MMC Snap−In"
"Provider" = "DataCon Services"
"Version" = "1.0"

[HKEY_LOCAL_MACHINE\Software\Microsoft\MMC\Snapins\{B6BBA1A8−6D1C−47f9−
 A9CC−FAC427315CAF}\StandAlone]

There are a few notes about this part of the example. I began by adding a new text file to the project and
simply renamed it with a .REG extension. The file must begin with REGEDIT4 as shown, and you need to
add the main GUID key. Notice the use of curly brackets around the GUID entry (they don’t appear in the
[Guid] attribute entry). Only provide the About value if your snap−in has an About dialog. The NameString,

Chapter 12: Working with Microsoft Management Console

259

Provider, and Version values are also optional. You must provide the StandAlone key, as shown, if you’re
following this example—snap−in extensions require different programming techniques from the ones shown
for this example.

The Case for an MMC Snap−In

We’ll work on a MMC snap−in example in this chapter because I consider it the most common example of a
specialty application. A lot of developers on Microsoft’s various newsgroups have asked how to create an
MMC snap−in, and I’m sure that many more are wondering how to perform this task. The lack of any MMC
projects in Visual Studio .NET and the changes to the MMC snap−in in Windows XP have led some
developers to believe the MMC snap−in is going to become history very soon. That may be, but for today, the
MMC snap−in still represents the best way of writing a configuration utility.

MMC is the application used by Windows 2000 and Windows XP to manage operating system functionality.
You’ll find it in the \System32 folder as MMC.EXE. MMC is a container application that hosts snap−ins—the
container doesn’t do much more than provide a place for the snap−in to perform its work. Of course, the
container does lend a consistency to the user interface and ensures that each snap−in behaves in a certain way.
Each configuration of snap−ins is called a console, and you’ll find a list of these consoles in the
Administrative Tools folder of the Control Panel. Figure 12.2 shows a typical example of a console—the
Performance console.

In this case, the System Monitor and the Performance Logs and Alerts are actually two separate MMC
snap−ins that appear together in this console. You can use the File Ø Add/Remove Snap−in command to
display the Add/Remove Snap−in dialog box, which contains a list of snap−ins used to create a particular
console, as shown in Figure 12.3. Note that the folders beneath the Performance Logs and Alerts entry in
Figure 12.2 are actually part of a single MMC snap−in.

Figure 12.2: MMC consoles pair one or more MMC snap−ins with the MMC container application.

You should also notice that the System Monitor is an ActiveX Control snap−in, not a standard MMC snap−in.
You can always use standard ActiveX controls as MMC snap−ins, but most ActiveX controls lack the
interfaces required to interact with the MMC container application. For example, I created a special type of
pushbutton and inserted it in MMC (just to see what it would do). Yes, I could see the button and it reacted
when I clicked it, but that’s it. However, my pushbutton example does demonstrate that MMC is just another
way to use COM, nothing more or less.

The Case for an MMC Snap−In

260

Notice the Extensions tab in Figure 12.3. Some MMC snap−ins include augmented features—additions that
you can choose to include in the console. Figure 12.4 shows the extensions for the Computer Management
snap−in. The extensions in this list add data views to a console created using the Computer Management
snap−in. If you scroll through the list, you’ll notice that some snap−ins are also used in stand−alone mode,
which indicates the duality of their nature. Extension snap−ins rely on the host snap−in for some types of
services and must implement additional interfaces as well as provide extra code for working with the host
snap−in. However, they also provide the basic level of snap−in functionality that we’ll discus in the first
example in the chapter.

Figure 12.3: Many consoles appear to contain just one control but are actually made of several controls.

Figure 12.4: Some snap−ins provide extended functionality for a stand−alone MMC snap−in.

The “magic” for the MMC application is the MSC file. This file contains the information required to create a
console. In fact, if you look in the \System32 folder, you’ll find the PerfMon.MSC file that contains the
information to create the Performance console. Interestingly enough, this file uses XML to store information
and has used it long before XML was very popular on the Internet. Figure 12.5 shows a view of the MSC file
using XML Notepad.

Tip XML is almost, but not quite, readable by the average human. Reading simple files is almost a trivial

The Case for an MMC Snap−In

261

exercise, but once the data gets nested a few layers deep, reading it can become tiresome. That’s why you
should have a tool for reading XML in your developer toolkit. The only problem is that some of these
tools cost quite a bit for the occasional user. Microsoft has remedied this problem a little with the
introduction of XML Notepad
(http://msdn.microsoft.com/library/default.asp?url=/library/en−us/dnxml/_html/xmlpaddownload.asp).
This utility is free for the price of a download and does a reasonable job of reading most XML files.

Figure 12.5: MMC relies on MSC files that store configuration information in XML format.

Figure 12.5 shows an important bit of information about the MMC application. The first and third MMC
snap−in globally unique identifier (GUID) entries correspond to the MMC snap−ins for the console. (You can
validate this information by looking the GUIDs up in the registry using RegEdit.) The third entry actually
points to the control responsible for handling ActiveX controls. If you look up the GUID for the second GUID
entry, you’ll notice that it’s for a folder snap−in, the Console Root folder in Figure 12.2.

MMC does have quite a bit to offer in the way of control organization and presentation. While this chapter
won’t explore every MMC feature, you’ll learn about quite a few of them. We’ll explore the MMC
application in more detail later as part of the example. For now, you have enough information to understand
some MMC basics.

Creating a Wrapper DLL

There are many reasons to create a wrapper DLL for this example. However, there are two reasons that are
more important than any other reason you might consider. The first reason is that MMC snap−ins are common
and you’ll probably create more than one during your career. Placing all of the common code in a wrapper
DLL means that you don’t have to cut and paste it later. The second reason is that no matter what you do,
MMC requires access to some functions in the MMC.LIB file and this library is simply inaccessible from any
.NET language.

Unless you develop your MMC snap−in in Visual C++ (in which case, you don’t need this chapter), you’ll
have to write parts using C# and other parts using Visual C++. Using more than one language means creating
multiple DLLs, which means using multiple files.

Tip One of the most common mistakes that developers will make is attempting to use a struct in
place of a class to implement an interface when working with C#. As a rule, you should never

Creating a Wrapper DLL

262

use a struct where a class is required. In this case, the struct is boxed by CLR, which means any
changes you make to the interface are reflected in the boxed copy, not in the original struct.
Using a class ensures that any changes you make in the interface appear as planned.
Unfortunately, debugging this type of problem can be intimidating unless you know what to
look for. You can always avoid the struct versus class conflict by using a class whenever you
have doubts.

The following sections will describe the steps for creating an MMC wrapper DLL. The code for this example
is too large to fit within the book, so we’ll look at important segments of it. The full source code for this
example appears in the \Chapter 12\MMCHelper folder of the CD. Note that there’s a second Visual C++
project included with this DLL that appears in the \Chapter 12\MMCHelper\MMCHelper2 folder. A single
solution file opens both projects because both projects form a single wrapper DLL in all reality.

Creating an Interface

There are a few problems you need to address when working with COM in a managed environment. The fact
that the two environments are so different doesn’t help matters much. COM uses an entirely different set of
rules from the ones you’ve used with the .NET Framework.

One of the first problems that you’ll need to consider is how to create a managed version of a COM interface.
The best way to do this is to add three attributes to the interface description. These attributes tell the compiler
to add information to the assembly that it wouldn’t normally provide. The following list tells you about each
of the attributes:

[ComImport] This attribute tells the compiler that the interface is based on a COM interface with the same
name. The .NET environment will actually import the COM definition for you. To use this attribute, the class
in question must derive from Object, which means that many COM interfaces won’t work with this attribute.
Make sure you read the documentation for the interface completely. The [ComImport] attribute is always used
with the [Guid] attribute—you must specify the GUID of the COM class that the interface will use. Finally,
the class must not have any members—the .NET environment creates the required public constructor (without
any parameters) automatically. In sum, this is a fast way to create an interface definition, but it’s limited.

[InterfaceType] This attribute describes the type of exposure to provide for the interface when exposed to
COM. The acceptable values include dual, IUnknown, and IDispatch. Generally, implementing a dual
interface is best because older versions of Visual Basic rely on IDispatch while older versions of Visual C++
rely on IUnknown. However, you can make the component slightly smaller by implementing one interface or
the other if the component has a specific target environment.

[Guid] This attribute assigns a globally unique identifier (GUID) to the interface. This must be the same
GUID used by the COM unmanaged counterpart. If you aren’t implementing an existing interface, then use
GUIDGen (see the section entitled "Using GUIDGen" earlier in this chapter) to create a new GUID. Using the
[Guid] attribute isn’t mandatory, but it should be to ensure that the GUID for your component remains
consistent.

Now that you know how to identify a COM interface substitute, let’s look at a typical interface example.
Here’s the ISnapinHelp2 interface used to add help support to an MMC snap−in. The ISnapinHelp2 interface
was introduced for MMC 1.1 and includes a second method for adding Web−based help to your snap−in:

[ComImport,
 InterfaceType(ComInterfaceType::InterfaceIsIUnknown),
 Guid("4861A010−20F9−11d2−A510−00C04FB6DD2C")]

Creating an Interface

263

public __gc __interface ISnapinHelp2
{
public:
 virtual /* [helpstring] */ HRESULT GetHelpTopic(
 /* [out] */ [Out]IntPtr *lpCompiledHelpFile) = 0;

 virtual /* [helpstring] */ HRESULT GetLinkedTopics(
 /* [out] */ [Out]IntPtr *lpCompiledHelpFiles) = 0;
};

Note The example code is written in Visual C++ because that’s what the Platform SDK
documentation uses—we’ll use C#, whenever possible, for the remaining examples in the
book. The reason I’m using Visual C++ in this section is to make it easier to identify the
components from the Platform SDK. In addition, you’ll find some interfaces are actually
easier to implement using Visual C++.

The first thing you need to notice about the interface is the __interface keyword. Visual C++ will compile an
interface that uses the interface keyword without a single word of complaint until you attempt to use attributes
with it. Because you won’t always need to use attributes with interfaces, it’s possible to create an interface
that relies on the interface keyword instead of the __interface keyword. The interface version will never work
properly in a managed environment.

If you’re familiar with the ISnapinHelp2 declaration in MMC.H, you’ll know that it derives from ISnapinHelp
and lacks the GetHelpTopic() method declaration shown in the example code. It’s impossible to derive a
managed interface from an unmanaged interface. Consequently, it’s often easier to create a combined
managed interface, as shown in the example (that is, unless you expect someone to use the older interface for
some reason, in which case you should implement both). Now that you’ve seen the Visual C++
implementation of the ISnapinHelp2 interface, let’s look at the C# equivalent:

[ComImport,
 InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
 Guid("4861A010−20F9−11d2−A510−00C04FB6DD2C")]
public interface ISnapinHelp2
{
 [PreserveSig()]
 int GetHelpTopic(out IntPtr lpCompiledHelpFile);
 [PreserveSig()]
 int GetLinkedTopics(out IntPtr lpCompiledHelpFiles);
}

While the Visual C++ code shares many similarities with the C# code, there are also some important
differences (other than language−specific differences). Notice the use of the [PreserveSig()] attribute.
Normally, the .NET environment converts interface method calls to an HRESULT format because that’s what
most of them use. The GetHelpTopic() function would actually appear as follows, without the [PreserveSig()]
attribute:

HRESULT GetHelpTopic([out] IntPtr lpCompiledHelpFile,
 [out, retval] int i);

In some cases, this conversion can cause odd application errors and even prevent the interface from working
properly. The [PreserveSig()] attribute maintains the method signature you create for the interface as part of
the interface definition. While using the [PreserveSig()] attribute is purely discretionary in Visual C++
because this language is able to use HRESULT values, C# developers should always use the [PreserveSig()]
attribute unless they actually anticipate using the HRESULT value. The best idea is to look at the Platform
SDK to see if the HRESULT value is used. In addition, look at a Visual C++ implementation of the same

Creating an Interface

264

interface. Finally, if you have problems getting the interface to work in an application, try using the
[PreserveSig()] attribute.

A second major difference in the two interface implementations is that the C# code relies on the out keyword
while the Visual C++ counterpart uses the [out] attribute. Always use the out keyword, whenever possible,
when writing interfaces using C#. Microsoft didn’t spend a lot of time documenting the difference between
the two, but you’ll find that the out keyword works with fewer problems in C# code.

Because an MMC snap−in is normally an unmanaged COM object, your managed MMC snap−in will have to
mimic its behavior. This means implementing at least the minimal subset of interfaces to create an operational
MMC snap−in. The following list shows which interfaces the first example in the chapter will use:

IDataObject•
IComponent•
IComponentData•
ISnapinAbout•

Note The smallest possible MMC snap−in implementation must contain four interfaces: IDataObject,
IComponent, IComponentData, and IClassFactory. You don’t need to implement IClassFactory, but the
other three interfaces must appear within your code. However, the snap−in won’t display correctly in the
Add Standalone Snap−in dialog box (associated with the MMC application) without the ISnapinAbout
interface. So, while you can get by without implementing it, the ISnapinAbout interface is actually a
required interface.

A fully functional MMC snap−in will include several other interfaces. These interfaces aren’t required to
make the MMC snap−in work—you implement them to ensure the user can access features such as help and
context menus. In other words, these are helpful user interface features. Generally, you’ll want to implement
the following list of interfaces to ensure the MMC snap−in will meet all users’ needs:

ISnapinHelp2•
IDisplayHelp•
IExtendContextMenu•
IExtendControlbar•
IExtendPropertySheet•

There are a number of other interfaces you can implement as part of an MMC snap−in, all of which appear in
the MMC.H file. MMC also implements a number of interfaces for you. While you can override these
interfaces to provide special behavior, you don’t need to create them for a simple MMC snap−in. These
MMC−provided interfaces include the following:

IPropertySheetProvider•
IPropertySheetCallback•
IConsoleNamespace2•
IHeaderCtrl•
IResultData•
IImageList•
IConsole2•
IContextMenuCallback•
IControlbar•
IToolbar•
IConsoleVerb•

Creating an Interface

265

As you can see, creating a managed substitute for unmanaged COM is often a matter of knowing which
interfaces to implement. Ultimately, the interfaces you implement affect the functionality of the resulting
component and determine the utility of the component you create. For example, you don’t have to implement
the ISnapinAbout interface to create a functional MMC snap−in, but this interface is required if you want to
provide at least some information to the user about the purpose of the MMC snap−in.

Even the optional interfaces will have a place in the wrapper DLL. For example, the IConsole2 interface
provides the means to access the MMC environment. Therefore, even though you don’t have to implement the
IConsole2 interface, you’ll need to include it in the DLL so that you can gain access to required MMC
functionality. Another example is the IControlbar interface. This interface is used by the IExtendControlbar
interface to add and remove toolbars and other controls to the MMC environment. Even though you don’t
need to implement the IControlbar interface, the IExtendControlbar interface requires access to it. These
reference interfaces are clearly identified in the source code so you can see how they interact with the snap−in
as a whole.

One of the best ways that I’ve found to learn about COM interfaces is to view implementations of similar
controls using the OLE/COM Object Viewer utility. This utility shows which interfaces an existing control
implements and therefore provides valuable clues when implementing similar controls when working with
.NET. You’ll also find clues in the various C/C++ header files because they normally define the interfaces for
a particular type of control or component. The Microsoft documentation and online sources often point to the
interface requirements for certain types of components as well. All it takes is a little detective work to learn
which interfaces you must implement to create a basic component and which interfaces to add in order to gain
some level of component functionality.

Tip Even though you don’t have to create multiple files when working with Visual Studio .NET, it’s often
helpful to do so when working with moderate− to large−sized wrapper DLLs such as the one used in this
example. Dividing code by type makes it easier to locate a specific piece of code. The example uses
separate files for function implementations, structures, enumerations, and interfaces.

Writing the MMC Wrapper DLL

This section describes the portions of the MMCHelper.DLL that we’ll use for every MMC snap−in that you
create. You’ll learn about some essential functions, the interface descriptions, enumerations, and structures.
Each element of the MMCHelper.DLL will appear in a separate file to make it easier to view and modify the
code later. This is a good practice to follow when you create large DLLs designed to act as helpers to
components. Each file is named to reflect the content of one of the sections that follow.

Adding the MMC Functions

There are two types of functions that you’ll need to access when writing an MMC snap−in. The first type is
utility functions—the type of functions that convert data and perform other types of tasks required to marshal
data between the managed and unmanaged environments. The second type is found in the MMC.LIB file.
These functions perform MMC−specific tasks that you can’t duplicate in any other way. A minimal MMC
wrapper DLL will include property page support as a minimum, but there are other C library functions that
you’ll eventually need to add.

Now that you have some idea of what we’re going to do in this section, let’s discuss the functions. Listing
12.1 shows the data translation functions we’ll need for this example. These functions help marshal the data
from the managed environment to the unmanaged environment. Note that the source code contains additional
documentation that doesn’t appear as part of Listing 12.1. You’ll find this source code in the Functions.CS
file found in the \Chapter 12\MMCHelper folder.

Writing the MMC Wrapper DLL

266

Listing 12.1: An Overview of MMC Functions

public static Int32 RGB(Byte Blue, Byte Red, Byte Green)
{
 Int32 Temp; // The output value.

 // Bit shift the three values.
 Temp = Red;
 Temp = Temp + (Green * 0x100);
 Temp = Temp + (Blue * 0x10000);

 // Return the value.
 return Temp;
}

public static IntPtr TranslateBitmap(IntPtr InputBitmap)
{
 IntPtr OutputBitmap; // Handle for the translated bitmap.
 IntPtr hdc; // Handle to the current device context.
 DIBSECTION ds; // Device Independent Bitmap definition.
 BITMAPINFO bmi; // Bitmap information structure.
 IntPtr Bits; // Pointer to the bit values
 UInt16 OldColorDepth; // Original color depth of the bitmap.
 Int32 BitmapLength; // Size of the input bitmap.

 // Initialize the structures.
 ds = new DIBSECTION();
 ds.dsBm = new BITMAP();
 ds.dsBmih = new BITMAPINFOHEADER();
 bmi = new BITMAPINFO();
 bmi.bmiColors = new RGBQUAD();
 bmi.bmiHeader = new BITMAPINFOHEADER();

 // Obtain the device context for this display.
 hdc = CreateCompatibleDC(IntPtr.Zero);

 // Obtain the bitmap information passed from the snap−in.
 BitmapLength = GetObject(InputBitmap,
 Marshal.SizeOf(ds),
 ref ds);

 // Create a BITMAPINFO structure based on the DIBSECTION.
 bmi.bmiHeader = ds.dsBmih;

 // Change the color depth of the bitmap to match the screen
 // color depth.
 OldColorDepth = bmi.bmiHeader.biBitCount;
 bmi.bmiHeader.biBitCount =
 (UInt16)GetDeviceCaps(hdc, DevCapParm.BITSPIXEL);

 // Create a bitmap handle that uses the same color depth as
 // the current screen.
 OutputBitmap = CreateDIBSection(hdc,
 ref bmi,
 0,
 out Bits,
 IntPtr.Zero, 0);

 // Return the bitmap’s original color depth.
 bmi.bmiHeader.biBitCount = OldColorDepth;

Writing the MMC Wrapper DLL

267

 // Translate the bitmap into something the screen can display.
 SetDIBits(hdc,
 OutputBitmap,
 0,
 bmi.bmiHeader.biHeight,
 ds.dsBm.bmBits,
 ref bmi,
 0);

 // Delete the device context to free memory.
 DeleteDC(hdc);

 return OutputBitmap;
}

public static Byte[] StringToByteArray(String Input)
{
 Char []CArray; // Character array holding the string.
 Byte []Output; // Output data.
 Int32 CharCount; // Character loop counter.
 Int32 UniCount; // Unicode character loop counter.

 // Convert the input string to a character array.
 CArray = Input.ToCharArray();

 // Initialize the output array and counter.
 Output = new Byte[(Input.Length + 1) * 2];
 UniCount = 0;

 // Use a loop to place the character array values into the
 // Byte array.
 for (CharCount = 0; CharCount < Input.Length; CharCount++)
 {
 // MMC uses Unicode strings, so we need to convert each
 // single input character into a Unicode equivalent.
 Output[UniCount++] = (Byte)CArray[CharCount];
 Output[UniCount++] = 0;
 }

 // Add a null terminator.
 Output[UniCount++] = 0;
 Output[UniCount] = 0;

 // Return the result.
 return Output;
}

The RGB() method is a conversion of yet another Visual C++ macro. In this case, the method accepts three
color values as input, shifts the color values as needed to keep them separate within a single variable, and then
returns that value. MMC often requires an application to provide a color mask for the icons it uses. This
function helps create the value used to represent the color in the color mask.

One of the hidden issues of working with .NET is that it assumes that images should have certain features.
Unfortunately, the assumptions it makes contrast with those required by MMC. One of the major issues is that
.NET usually tries to use 32−bit color for all images while MMC requires that the color depth and other
features of the bitmap match the operating system environment. The TranslateBitmap() method accepts a
.NET bitmap as input and translates it into something that MMC can use.

Writing the MMC Wrapper DLL

268

Let’s begin by looking at one of the variables used for this portion of the example. The example code requires
access to a number of data structures—most of which are quite mundane. However, the DIBSECTION data
structure is a little unusual and we’ll want to discuss it as part of the TranslateBitmap() method. Here’s the
definition for the DIBSECTION data structure:

/// <summary>
/// This structure is used with the CreateDIBSection() function
/// to store information about the device independent bitmap (DIB).
/// </summary>
[StructLayout(LayoutKind.Sequential, Pack=1, CharSet=CharSet.Auto)]
private struct DIBSECTION
{
 BITMAP dsBm;
 BITMAPINFOHEADER dsBmih;

 // The original structure calls for an array of three
 // DWORD values.
 // DWORD dsBitfields[3];
 // We can substitute three UInt32 values instead.
 UInt32 dsBitfields0;
 UInt32 dsBitfields1;
 UInt32 dsBitfields2;

 IntPtr dshSection;
 UInt32 dsOffset;
}

Throughout the book, we’ve had to work hard to revolve certain data elements within structures. The
DIBSECTION data structure contains one of those elements in the form of a DWORD array. Fortunately, it’s
easy to substitute three UInt32 fields in place of the DWORD array in this case. Don’t get the idea that this
solution is free. You must include the Pack=1 argument in the [StructLayout] attribute for this solution to
work. Otherwise, you’ll see a wealth of strange and intermittent errors in your code. The rest of this data
structure is relatively straightforward.

The TranslateBitmap() method code begins by initializing the data structures used to translate the bitmap. It
then creates a compatible device context using the CreateCompatibleDC() function. The device context is
normally used for drawing, but it also provides information about the current display environment. MMC
requires a bitmap that has the same features as the current display environment, so learning what those
features are is a logical first step. Notice that we pass a null pointer to the CreateCompatibleDC() function,
which means it will return the drawing information for the Desktop rather than the current application.

Now that the code has an information source, it begins to create a BITMAPINFO data structure that contains
the statistics for the current bitmap. Part of this process also creates the DIBSECTION data structure
discussed earlier using the GetObject() function. One of the entries in the BITMAPINFO data structure
contains the color depth of the current bitmap, which the code saves in OldColorDepth for later use. The code
obtains the correct color depth for the display setup using the GetDeviceCaps() function with the compatible
device context handle obtained earlier and places it in the BITMAPINFO data structure. The final step is to
use the CreateDIBSection() function to create a new bitmap based on the old bitmap data and new
BITMAPINFO data structure content. The code returns the original color depth to the BITMAPINFO data
structure for use in a final call.

At this point, the code has created a new bitmap, but the bitmap lacks data. All it has is a data structure that
provides information about the format of the bitmap. The code uses the SetDIBits() function to move the data
from the original bitmap to the new bitmap while taking the differences in bitmap structure into account. This

Writing the MMC Wrapper DLL

269

means translating some colors to new values in order to make the new data compatible with the color depth
information. The final step is to delete the compatible device context and output the modified bitmap.

The StringToByteArray() method fills in one of the few data translation gaps in the .NET arsenal. This
function accepts a standard string as input and converts it to an array of bytes for use with MMC. The first
step in this process is to create a character array from the string. The code then computes the length of the byte
array by allowing two bytes for each character (for a Unicode representation) and adding two bytes for a
terminating null character.

The code relies on a for loop to perform the actual conversion and data transfer. Each character consumes two
bytes. The first byte is always a zero, while the second byte contains the current ANSI value of the individual
characters in the character array. The final step is to add the null termination. The byte array will actually
appear as a series of numbers that MMC will convert back to a string for display on screen. Interestingly
enough, you only need to perform this conversion for some strings. For example, the strings for the About
dialog box don’t require conversion, but those displayed in the Scope pane do. Make sure you check the
example code for the quirks in displaying strings in MMC.

As previously mentioned, we also require access to some of the functions found in the MMC.LIB file. The
only problem with this requirement is that we’ll need to use Visual C++ to create the required access. The use
of two languages means that the wrapper DLL will actually have two DLL files. The use of two files further
complicates things by creating a split in the MMCHelper namespace. It’s enough to drive you mad, but there’s
an easy way to fix the problem. Let’s begin by looking at the code for the two library calls. You’ll find this
source code in the MMCHelper2.H file found in the Chapter 12\MMCHelper\MMCHelper2 folder:

public __gc class HelperFunctions
{
public:
 // Allows the property sheet to notify the MMC snap−in component
 // that the user has made a change to the object settings.
 static HRESULT DoMMCPropertyChangeNotify(Int32 lNotifyHandle,
 LPARAM param)
 {
 return MMCPropertyChangeNotify(lNotifyHandle, param);
 }

 // Frees the handle to an MMCN_PROPERTY_CHANGE message. This message
 // is sent by the system as the result of a
 // MMCPropertyChangeNotify()
 // call by the property sheet.
 static HRESULT DoMMCFreeNotifyHandle(Int32 lNotifyHandle)
 {
 return MMCFreeNotifyHandle(lNotifyHandle);
 }
};

As you can see, there’s nothing unusual about this part of the wrapper. We use the Visual C++
HelperFunctions class to create a connection to the MMC.LIB functions. As previously mentioned, however,
that access is in a separate file named MMCHelper2.DLL and somewhat inaccessible to the developer. To fix
this section problem, we’ll create another class in the C# portion of the code, as shown here. (Note that the
source code file contains more documentation.) You’ll find this source code in the MMCFunc.CS file found
in the \Chapter 12\MMCHelper folder:

public class MMCImportedFuncs
{
 public static Int32 MMCPropertyChangeNotify(Int32 lNotifyHandle,

Writing the MMC Wrapper DLL

270

 Int32 param)
 {
 return HelperFunctions.DoMMCPropertyChangeNotify(lNotifyHandle,
 param);
 }

 public static Int32 MMCFreeNotifyHandle(Int32 lNotifyHandle)
 {
 return HelperFunctions.DoMMCFreeNotifyHandle(lNotifyHandle);
 }
}

This two−level approach does incur a small performance penalty, and there’s no good way to overcome the
problem. However, now the functions are easily accessible through the MMCImportedFuncs class to the
developer using the MMCHelper.DLL file, and the function names are precisely the same as those found in
the Visual C++ documentation for MMC. In short, sometimes you need to use multiple levels of declarations
in order to achieve usability goals and the cost of a small hit in performance. However, it’s important to at
least try to find a solution that doesn’t involve this approach whenever possible.

Defining the Interfaces

As previously mentioned, there are four essential interfaces you must define for an MMC snap−in:
IComponent, IComponentData, IDataObject, and ISnapinAbout. Listing 12.2 shows the code for these four
interfaces. Notice that working with interfaces in C# is similar to working with them in either the managed or
unmanaged Visual C++ environment. Sure, there are some differences (and we’ll discuss them all), but the
essential coding technique is the same. Note that the listing doesn’t include all of the comments that you’ll
find in the standard source code. You’ll find this source code in the Interfaces.CS file found in the \Chapter
12\MMCHelper folder.

Listing 12.2: The Four Basic MMC Interfaces

[ComImport,
 InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
 Guid("43136EB2−D36C−11CF−ADBC−00AA00A80033")]
public interface IComponent
{
 void Initialize(
 [MarshalAs(UnmanagedType.Interface)]Object lpConsole);
 [PreserveSig()]
 RESULT_VAL Notify(IntPtr lpDataObject,
 MMC_NOTIFY_TYPE aevent,
 Int32 arg,
 Int32 param);
 void Destroy(Int32 cookie);
 void QueryDataObject(Int32 cookie,
 DATA_OBJECT_TYPES type,
 out IDataObject ppDataObject);
 [PreserveSig()]
 RESULT_VAL GetResultViewType(Int32 cookie,
 out IntPtr ppViewType,
 out Int32 pViewOptions);
 void GetDisplayInfo(ref RESULTDATAITEM ResultDataItem);
 [PreserveSig()]
 RESULT_VAL CompareObjects(IDataObject lpDataObjectA,
 IDataObject lpDataObjectB);
}

Writing the MMC Wrapper DLL

271

[ComImport,
 InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
 Guid("955AB28A−5218−11D0−A985−00C04FD8D565")]
public interface IComponentData
{
 void Initialize(
 [MarshalAs(UnmanagedType.Interface)] Object pUnknown);
 void CreateComponent(out IComponent ppComponent);
 [PreserveSig()]
 RESULT_VAL Notify(IntPtr lpDataObject,
 MMC_NOTIFY_TYPE aevent,
 IntPtr arg,
 IntPtr param);
 void Destroy();
 void QueryDataObject(Int32 cookie,
 DATA_OBJECT_TYPES type,
 out IDataObject ppDataObject);
 void GetDisplayInfo(ref SCOPEDATAITEM ResultDataItem);
 [PreserveSig()]
 RESULT_VAL CompareObjects(IDataObject lpDataObjectA,
 IDataObject lpDataObjectB);
}

[ComImport,
 InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
 Guid("0000010e−0000−0000−C000−000000000046")]
public interface IDataObject
{
 [PreserveSig()]
 RESULT_VAL GetData(ref FORMATETC pFormatEtc, ref STGMEDIUM pmedium);
 void GetDataHere(ref FORMATETC pFormatEtc, ref STGMEDIUM pmedium);
 [PreserveSig()]
 RESULT_VAL QueryGetData(ref FORMATETC pFormatetc);
 [PreserveSig()]
 RESULT_VAL GetCanonicalFormatEtc(ref FORMATETC pFormatetcIn,
 ref FORMATETC pFormatetcOut);
 [PreserveSig()]
 RESULT_VAL SetData(ref FORMATETC pFormatetc,
 ref STGMEDIUM pmedium,
 Boolean fRelease);
 [PreserveSig()]
 RESULT_VAL EnumFormatEtc(UInt32 dwDirection,
 IntPtr ppenumFormatetc);
 [PreserveSig()]
 RESULT_VAL DAdvise(ref FORMATETC pFormatetc,
 ADVF advf,
 IntPtr pAdvSink,
 ref UInt32 pdwConnection);
 [PreserveSig()]
 RESULT_VAL DUnadvise(UInt32 dwConnection);
 [PreserveSig()]
 RESULT_VAL EnumDAdvise(IntPtr ppenumAdvise);
}

[ComImport,
 InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
 Guid("1245208C−A151−11D0−A7D7−00C04FD909DD")]
public interface ISnapinAbout
{
 void GetSnapinDescription(out IntPtr lpDescription);
 void GetProvider(out IntPtr pName);

Writing the MMC Wrapper DLL

272

 void GetSnapinVersion(out IntPtr lpVersion);
 void GetSnapinImage(out IntPtr hAppIcon);
 void GetStaticFolderImage(out IntPtr hSmallImage,
 out IntPtr hSmallImageOpen,
 out IntPtr hLargeImage,
 out Int32 cMask);
}

As previously mentioned, every existing COM interface definition will include a few attributes to ensure that
the managed environment provides the proper linkage to the unmanaged environment. In general, every
MMC−related interface includes the [ComImport], [InterfaceType], and [Guid] attributes shown. Notice that
the [InterfaceType] attribute uses the ComInterfaceType.InterfaceIsIUnknown enumeration value, which
seems to contradict our previous discussion. Remember that we’re working with MMC in this case, not
creating a component for general use. MMC expects an IUnknown interface, so we can save some memory
and improve performance slightly by implementing only an IUnknown interface.

The Initialize() method requires the lpConsole argument, which is a pointer to an interface. There are times
when you have to pass an interface as part of the communication between MMC and the snap−in. You can
perform this task using a number of techniques, but the technique that works best when you don’t want to
define and implement the interface in your component is to pass the interface as a specially marshaled object
and use the [MarshalAs(UnmanagedType.Interface)] attribute. This technique ensures that the recipient will
see the interface as an interface, even if it’s operating in the unmanaged environment.

The next oddity is the MMC_NOTIFY_TYPE aevent argument of the Notify() method. The
MMC_NOTIFY_TYPE enumeration contains a list of messages that the Notify() method can receive. The
Platform SDK documentation shows the argument name as event, but we’re using aevent. Remember that
event is a keyword in C#, so we need to modify the name. The reason I chose aevent is that when you import a
DLL that uses this same name from Visual C++, C# shows the argument as @event in the object browser.

Every message that your component receives from the Notify() function has different parameters. The
IComponent::Notify help topic at ms−help://MS.VSCC/MS.MSDNVS/mmc/mmc12ref01_97qx.htm contains
a list of the messages. Click one of the associated links and you’ll learn the particulars of that message,
including the arguments that it requires. Looking through the list of messages, you’ll notice that many of the
arguments require pointer arguments. Consequently, determining the data type for the arg and param
arguments is difficult. I chose to use Int32 values because that’s what we’ve used for other messages and the
example won’t require many pointer values. You could also use an IntPtr for each of the two values. There are
good arguments for both value types, so the choice of value type depends on how you plan to work with
MMC.

The QueryDataObject() method is another method that works with an interface. In this case, the method
receives an interface pointer from another object, so we have to handle the interface using a different
technique than the Initialize() method discussed earlier. Notice that the QueryDataObject() method passes an
object of type IDataObject. In addition, it uses out rather than ref as normal. A check of the Platform SDK
documentation shows that this function receives the pointer from an outside source, which means you have to
pass an uninitialized object. It’s extremely important to determine how the argument is marked. The following
list provides some general rules you can use based on the documentation:

[in] Always initialize the object and fill it with data. The caller must provide data for in values.

Writing the MMC Wrapper DLL

273

[in, out] Mark the object as ref and initialize it. You may also need to provide data for the object depending
on the needs of the recipient. Generally, you’ll receive data back from the call in the form of modified object
properties or values.

[out] Mark the object as out. Don’t initialize the object or provide any data for it. You should always receive
data from the call, even if the data is an error indicator.

The CompareObjects() method also works with interfaces in a manner similar to the _Initialize() method.
We’ll actually provide these two interfaces as output. However, in this case, we’ve already defined the
IDataObject interface for another call, so we don’t need to use the specially marshaled object technique. This
method shows you the direct method for passing interfaces that you’ve defined.

The IComponentData interface has many of the same methods as IComponent. Notice that there’s a method
for creating an instance of the component that receives a pointer to an IComponent interface. We’ll see the
importance of this method later while working with the example snap−in. The GetDisplayInfo() method is
also important in that it’s the first method that passes a structure. This data structure contains result data on
return. Again, you’ll see the importance of this method when we discuss the example snap−in.

The IDataObject interface includes methods for exchanging data between objects and creating data
notifications. This interface requires use of more data structures than other interfaces we’ve viewed so far. In
addition, you’ll find that the use of these structures can become quite subtle, requiring careful coding on the
part of the developer. Fortunately, MMC use of the IDataObject interface is relatively straightforward, so
there won’t be too many surprises for this example.

Note There are a few special considerations when creating interface definitions. One of them is
not to drive yourself crazy defining every potential interface element, especially if you’ll
never use it. One such example is the EnumFormatEtc() method of the IDataObject
interface. The example code shows the ppenumFormatetc argument defined as an IntPtr.
This argument is actually supposed to appear as an IEnumFORMATETC interface
pointer. This interface is the COM version of the enumeration and it points to an array of
FORMATETC data structures. It’s unlikely you’ll ever need the IEnumFORMATETC
interface for your MMC snap−ins, so using an IntPtr doesn’t present a problem in this
case.

The ISnapinAbout interface is simultaneously the easiest and the hardest interface to implement. This
interface enables your snap−in to provide identification information to MMC. It’s the first interface used by
MMC and could be the only interface used in a particular session. Three of the methods are exceptionally easy
to implement because they only pass strings: GetSnapinDescription(), GetProvider(), and GetSnapinVersion().
The remaining two methods are more difficult to implement because they pass pointers to icons.

Passing a handle to an icon to MMC isn’t the same as passing an icon to another managed application. MMC
expects that the icon it receives is ready to display using the current system setup. Unfortunately, this means
you’ll normally have to manipulate that icon so it has the correct resolution and color depth. The
TranslateBitmap() function described in the section entitled "Adding the MMC Functions" performs this task.
MMC also requires a specially formatted bitmap so it knows which color to treat as transparent. The RGB()
function creates the color mask as an Int32 value. We also discussed this function earlier, so we won’t discuss
it again here.

Writing the MMC Wrapper DLL

274

Defining the Enumerations

MMC snap−ins, like most of the interoperability scenarios we’ve discussed, require a number of enumerations
to define acceptable data entry values and to make programming easier. You’ll find the enumerations in the
Enumerations.CS file found in the \Chapter 12\MMCHelper folder. All of the enumeration entries include full
documentation on the purpose of the enumeration.

When you view the enumerations, you’ll find that they provide varied input to the MMC snap−in. Some of the
enumerations, such as RESULT_VAL, provide standard values. A few of the enumerations are MMC
specific. For example, the MMC_NOTIFY_TYPE enumeration provides a list of standard notifications sent
by the MMC container to the MMC snap−in, as shown here:

public enum MMC_NOTIFY_TYPE
{
 MMCN_ACTIVATE = 0x8001,
 MMCN_ADD_IMAGES = 0x8002,
 MMCN_BTN_CLICK = 0x8003,
 MMCN_CLICK = 0x8004,
 MMCN_COLUMN_CLICK = 0x8005,
 MMCN_CONTEXTMENU = 0x8006,
 MMCN_CUTORMOVE = 0x8007,
 MMCN_DBLCLICK = 0x8008,
 MMCN_DELETE = 0x8009,
 MMCN_DESELECT_ALL = 0x800A,
 MMCN_EXPAND = 0x800B,
 MMCN_HELP = 0x800C,
 MMCN_MENU_BTNCLICK = 0x800D,
 MMCN_MINIMIZED = 0x800E,
 MMCN_PASTE = 0x800F,
 MMCN_PROPERTY_CHANGE = 0x8010,
 MMCN_QUERY_PASTE = 0x8011,
 MMCN_REFRESH = 0x8012,
 MMCN_REMOVE_CHILDREN = 0x8013,
 MMCN_RENAME = 0x8014,
 MMCN_SELECT = 0x8015,
 MMCN_SHOW = 0x8016,
 MMCN_VIEW_CHANGE = 0x8017,
 MMCN_SNAPINHELP = 0x8018,
 MMCN_CONTEXTHELP = 0x8019,
 MMCN_INITOCX = 0x801A,
 MMCN_FILTER_CHANGE = 0x801B,
 MMCN_FILTERBTN_CLICK = 0x801C,
 MMCN_RESTORE_VIEW = 0x801D,
 MMCN_PRINT = 0x801E,
 MMCN_PRELOAD = 0x801F,
 MMCN_LISTPAD = 0x8020,
 MMCN_EXPANDSYNC = 0x8021,
 MMCN_COLUMNS_CHANGED = 0x8022,
 MMCN_CANPASTE_OUTOFPROC = 0x8023
}

The developer can use this list to determine which actions to act upon within the MMC snap−in. For example,
if you want to provide refresh support, you’ll need to implement the MMCN_REFRESH message. Likewise,
if you want to provide support for printing, you’ll need to implement the MMCN_PRINT message. If an
MMC snap−in doesn’t implement a particular message, the MMC container will provide either a default
action or simply ignore the user request. You’ll find that the container ignores the request more often than not.

Writing the MMC Wrapper DLL

275

Defining the Data Structures

Like many parts of Windows, you’ll use a lot of data structures to create an MMC snap−in. For example,
there are a number of private data structures used to create the data translation functions described earlier.
However, there are two data structures that all MMC snap−ins use, and they appear in Listing 12.3. You’ll
find a complete list of the public data structures in the Structures.CS file found in the \Chapter
12\MMCHelper folder.

Listing 12.3: Structures Used by a Basic MMC Snap−In

[StructLayout(LayoutKind.Sequential)]
public struct RESULTDATAITEM
{
 public UInt32 mask;
 public Int32 bScopeItem;
 public Int32 itemID;
 public Int32 nIndex;
 public Int32 nCol;
 public IntPtr str;
 public Int32 nImage;
 public UInt32 nState;
 public Int32 lParam;
 public Int32 iIndent;
}

 [StructLayout(LayoutKind.Sequential)]
public struct SCOPEDATAITEM
{
 public UInt32 mask;
 public IntPtr displayname;
 public Int32 nImage;
 public Int32 nOpenImage;
 public UInt32 nState;
 public Int32 cChildren;
 public Int32 lParam;
 public Int32 relativeID;
 public Int32 ID;
}

The code defines one data structure for the Result pane (the one on the right) and a second data structure for
the Scope pane (the one on the left). Each of these structures defines a single item. In other words, it’s quite
likely that a single MMC snap−in will generate these data structures several times—once for each piece of
information that the MMC snap−in needs to display on screen. The choice of data structure is obvious—use
the one that fits the pane you want to populate with data.

As you can see, the SCOPEDATAITEM data structure contains entries that give it a name, several images, a
state, a list of children, and several identifiers. Some of these items are set directly, while others are generated
automatically for you by the MMC console. In some cases, such as the images, you have a choice of
implementation techniques. If you don’t set the image within the code, MMC will set the image using a
default value.

The RESULTDATAITEM data structure contains entries that associate it with a particular scope data item,
column, and row. Each result data item also has a name, image, and state associated with it. You can
optionally set a data value and indent the result data item as needed. Like the scope data item, MMC will

Writing the MMC Wrapper DLL

276

automatically assign values to some entries for you if you don’t assign them within the code. For example, a
result data item will have an image assigned to it even if you don’t add one using the code.

Developing the MMC Snap−In Example

The MMC example we’ll look at is basic—it includes just the essentials required to get MMC to recognize the
component as a snap−in. This means implementing specific interfaces and ensuring that MMC will recognize
the interfaces. We won’t concentrate too hard on any serious content in this example because getting the
snap−in to work is difficult enough for a first try. The example will show you how to use the wrapper DLL,
create an About dialog box, display basic information about the snap−in in various places, and present some
information on screen. We’ll also discuss the use of nodes for presentation because this is a basic element of
most snap−ins.

This example won’t show you how to interact with other portions of Windows. In addition, this is a
stand−alone snap−in. MMC supports various snap−in types and the stand−alone is the easiest type to create
because it doesn’t rely on the inner workings of any other snap−in. Another type of popular snap−in is the
extension snap−in. An extension snap−in augments, modifies, or otherwise extends the functionality of an
existing snap−in but can’t run as a stand−alone entity. MMC also support combination snap−ins and other
variants. Because of the number of varieties of MMC snap−ins, you should try this example first, then move
on to more complex example, and finally, create precisely the type of snap−in needed for your application.
You’ll find the source code for this example in the \Chapter 12\MMCSample folder of the CD.

Developing an About Dialog

The About dialog is one of the easier parts of the MMC snap−in to create, and it’s also the only part that
works independently of the rest of the MMC snap−in. It helps to implement this part of the MMC snap−in
first because you can quickly see that the MMC snap−in is registered correctly and has the ability to interact
with MMC. Sometimes, creating the required interaction is harder than any other part of the development
process because Microsoft doesn’t make it easy to perform this task.

We’ll explore the output of this example in the section entitled “Testing the Snap−In within MMC.” For now,
let’s look at the code to create an About dialog. Listing 12.4 shows a complete implementation of the About
dialog. The information might not be as complete as you’d like it to be, but every element of the About dialog
is present and there’s little reason to change it (except for content) in any MMC snap−in.

Listing 12.4: Elements of a Standard About Dialog

[Guid("BACD4F1D−8338−41ee−9D55−DDECE3D8BBCE")]
public class MySnapInAbout : ISnapinAbout
{
 // Define the icons for this snapin.
 IntPtr MainIcon; // Handle for the main icon.
 IntPtr BMap16; // Handle for the 16 X 16 bitmap.
 IntPtr BMap32; // Handle for the 32 X 32 bitmap.

 public MySnapInAbout()
 {
 try
 {
 // Retrieve an embedded bitmap from the current assembly.
 Assembly Asm = Assembly.GetExecutingAssembly();
 Stream Strm =

Developing the MMC Snap−In Example

277

 Asm.GetManifestResourceStream("MMCSample.Main.bmp");
 Bitmap Temp = new Bitmap(Strm);

 // Place a handle for an icon based on the bitmap in MainIcon.
 MainIcon = Temp.GetHicon();

 // Create compatible bitmaps for the two bitmap images.
 IntPtr Translate = new Bitmap(Temp, 16, 16).GetHbitmap();
 BMap16 = MMCFunctions.TranslateBitmap(Translate);
 WindowsFunctions.DeleteObject(Translate);

 Translate = new Bitmap(Temp, 32, 32).GetHbitmap();
 BMap32 = MMCFunctions.TranslateBitmap(Translate);
 WindowsFunctions.DeleteObject(Translate);
 }
 catch (Exception e)
 {
 // Display a complete error message so the user knows what
 // went wrong.
 MessageBox.Show("About dialog failed to initialize.\r\n" +
 "\r\nSource: " + e.Source +
 "\r\nMessage: " + e.Message +
 "\r\nTarget Site: " + e.TargetSite +
 "\r\nStack Trace: " + e.StackTrace,
 "\r\nInitialization Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }
 }

 ~MySnapInAbout()
 {
 // Deallocate the memory used by the three images.
 if (MainIcon != IntPtr.Zero)
 WindowsFunctions.DestroyIcon(MainIcon);
 if (BMap16 != IntPtr.Zero)
 WindowsFunctions.DeleteObject(BMap16);
 if (BMap32 != IntPtr.Zero)
 WindowsFunctions.DeleteObject(BMap32);
 }

 public void GetSnapinDescription(out IntPtr lpDescription)
 {
 // Output a description string.
 lpDescription =
 Marshal.StringToCoTaskMemUni("A Simple MMC Snap−In Example");
 }

 public void GetProvider(out IntPtr pName)
 {
 // Output the name of the snap−in creator.
 pName = Marshal.StringToCoTaskMemUni("DataCon Services");
 }

 public void GetSnapinVersion(out IntPtr lpVersion)
 {
 // Output a version number string.
 lpVersion = Marshal.StringToCoTaskMemUni("1.0");
 }

 public void GetSnapinImage(out IntPtr hAppIcon)

Developing the MMC Snap−In Example

278

 {
 // Output the main icon for the snap−in. This is the
 // icon that appears when a user adds the snap−in to the
 // console.
 hAppIcon = MainIcon;
 }

 public void GetStaticFolderImage(out IntPtr hSmallImage,
 out IntPtr hSmallImageOpen,
 out IntPtr hLargeImage,
 out int cMask)
 {
 // Provide handles for each of the static image outputs.
 // You could provide separate bitmaps for the two small
 // image and the small open image.
 hSmallImage = BMap16;
 hSmallImageOpen = BMap16;
 hLargeImage = BMap32;

 // Provide a color mask for the images.
 cMask=0x00FFFFFF;
 }
}

The MySnapInAbout constructor creates the icons used for the MMC snap−in in general. The code obtains the
required bitmap from the assembly using the GetManifestResourceStream() method, modifies it for size using
the Bitmap() constructor, and then calls the TranslateBitmap() method we discussed earlier to change the
color depth. The resulting bitmaps are unmanaged resources that you must destroy before the MMC snap−in
exits, as shown in the MySnapInAbout destructor.

The remaining methods for the interface all provide one kind of information. MMC polls each method as
needed to populate dialog boxes. For example, if the user requests a description of the snap−in, MMC will call
the GetSnapinDescription() method. Notice how the code marshals the strings in this case. We’re creating the
strings using the StringToCoTaskMemUni() in order to create an unmanaged resource for MMC. Because
we’re using standard .NET marshaling to perform the task, there’s no reason to free the memory manually
later.

Working with IDataObject

The IDataObject interface is the place where you can make the most mistakes in creating an MMC snap−in. In
fact, implementing this interface with even slight errors can cause MMC to simply exit without an error
message of any kind. Even if MMC does present an error message, it’s likely that this message will fail to tell
you anything that you can use to debug the MMC snap−in.

The GetDataHere() method is the one mandatory portion of the interface that you have to implement. In
addition, this is the method that prevents Visual Basic developers from creating an MMC snap−in because it
requires use of unsafe code. You must mark the method as Unsafe and diagnose any problems it creates with
this condition in mind. Listing 12.5 shows a common approach to implementing the GetDataHere() method.

Listing 12.5: Defining GetDataHere() for the IDataObject Interface

public unsafe void GetDataHere(ref FORMATETC pFormatEtc, ref STGMEDIUM pMedium)
{

Working with IDataObject

279

 IStream DataStream; // The data stream used to write data.
 Byte[] DataBuffer; // A data buffer.
 Int32 DataLength; // Size of the data buffer.
 UInt32 DataSent; // Number of bytes sent.
 Byte[] Nothing; // Data to send if there is nothing to send.
 UInt16 ClipFormat; // Input clipboard format.
 GUID TheGUID; // Class ID for the node or this snap−in.

 // Initialize the data.
 DataStream = null;
 DataSent = 0;
 Nothing = new Byte[2]{0x0, 0x0};
 ClipFormat = (UInt16)pFormatEtc.cfFormat;
 TheGUID = new GUID();

 try
 {
 // Open a global handle for the data stream.
 WindowsFunctions.CreateStreamOnHGlobal(pMedium.hGlobal,
 0,
 out DataStream);

 // Throw an exception if we couldn’t open a global handle.
 if (DataStream == null)
 {
 throw new Exception("Unable to open a global memory handle " +
 "for the datastream in " +
 "MySnapInDO.GetDataHere() − " +
 "CreateStreamOnHGlobal() method call " +
 "failed.");
 }

 // Determine if we need to output a name string for this node.
 // The example doesn’t support the zero deliminated node type, so
 // send nothing in that case.
 if (ClipFormat == CBDisplayName || ClipFormat == CBSZNodeType)
 {
 // Assign a value to the data buffer.
 if (ClipFormat == CBDisplayName)
 DataBuffer =
 MMCFunctions.StringToByteArray("MMC Example Display Name");
 else
 DataBuffer = Nothing;

 // Determine the data buffer length.
 DataLength = DataBuffer.Length;

 // Write the data to the data stream. Notice that you need to
 // create a fixed block in order to perform the write. This
 // ensures the snap−in writes the data without interference
 // from the garbage collector.
 fixed(byte* pData = DataBuffer)
 {
 DataStream.Write((IntPtr)pData,
 (UInt32)DataLength,
 out DataSent);
 }

 }
 // We need to send a GUID
 else if (ClipFormat == CBNodeType || ClipFormat == CBSnapinCLSID)

Working with IDataObject

280

 {

 if (ClipFormat == CBNodeType)
 {
 TheGUID.Data1 = 0xB6BBA1A8;
 TheGUID.Data2 = 0x6D1C;
 TheGUID.Data3 = 0x47f9;
 TheGUID.Data4 =
 new byte[8] {0xA9, 0xCC, 0xFA, 0xC4, 0x27, 0x31, 0x5C, 0xAF};
 }

 else
 {
 // The GUID for this snapin
 TheGUID.Data1 = 0xB6BBA1A8;
 TheGUID.Data2 = 0x6D1C;
 TheGUID.Data3 = 0x47f9;
 TheGUID.Data4 =
 new byte[8] {0xA9, 0xCC, 0xFA, 0xC4, 0x27, 0x31, 0x5C, 0xAF};
 }

 // Create a memory structure to hold the Class ID.
 IntPtr pData = Marshal.AllocCoTaskMem(16);

 // We need to marshal this structure ourselves
 Marshal.WriteInt32(pData, 0, (Int32)TheGUID.Data1);
 Marshal.WriteInt16(pData, 4, (Int16)TheGUID.Data2);
 Marshal.WriteInt16(pData, 2, (Int16)TheGUID.Data3);
 for(Int32 Counter = 0; Counter < 8; Counter++)
 Marshal.WriteByte(pData,
 Counter + 6,
 TheGUID.Data4[Counter]);

 DataStream.Write(pData, 16, out DataSent);
 Marshal.FreeCoTaskMem(pData);
 }
 }
 catch(Exception Except)
 {
 // return a failure value.
 throw new Exception("Failure in MySnapInDO.GetDataHere()",
 Except);
 }
}

The code begins by initializing the data structures. Notice that we create a special data structure containing a
double null byte value to send if the code has nothing to send. This special data structure simulates a null
Unicode value. Sending a single null value will have unpredictable results, so this is an important element to
remember.

The first step in providing data for output is to create a new data stream. In many cases, you’ll need to write
data using this technique because the managed environment doesn’t provide the required functionality. If the
MMC snap−in can’t allocate enough memory for the data stream, it throws an exception and exits because
there’s no way to continue without it.

After the code creates the data stream, it needs to check for the type of information that MMC is requesting by

Working with IDataObject

281

examining the ClipFormat value. If the requested type is CBDisplayName, the code uses the
StringToByteArray() method we discussed earlier to create a Unicode byte array for output to MMC. In this
case, the byte array will contain the name of the application. Notice the technique used to write this data to the
data stream. We have to create a byte*, an unsafe type, pin it using fixed, and then write it using
DataStream.Write(). Failure to use this technique will result in intermittent operation that you’ll never resolve
because the Garbage Collector is the source of the problem.

MMC can request other types of data, as shown in the listing. The second and third types, CBNodeType and
CBSnapinCLSID, are essentially the same. The code creates what amounts to a GUID for the node or
snap−in. Once the GUID is complete, the code sends it to MMC using the special write methods found in the
Marshal class. Notice the technique used in this case writes the items individually, not as a single unit. We
also have to allocate and free task memory for the data transfer.

Creating IComponent and IComponentData

The IComponent and IComponentData interfaces interact with the Scope and Result panes of the MMC
snap−in display. Both interfaces include a number of methods, but the two essential methods are Initialize()
and Notify(). The Initialize() method creates the data structures, images, and other data elements that Notify()
will manipulate and present. The code for both of these methods can become long and tedious to write, but it’s
pleasantly easy to write after writing the IDataObject interface code.

The two interfaces are also the most free−form part of the MMC snap−in. You don’t have to implement much
to make the MMC snap−in work. Of course, if you want the MMC snap−in functional enough to perform
work, then you need to implement the proper features, which is where the long coding sequences come into
play. The basic MMC snap−in created for this example implements the MMCN_SHOW message, which
means it must also implement the GetDisplayInfo() method. These two elements work together to display
some data on screen. The following code shows a basic example of an MMCN_SHOW message
implementation:

// The selected item needs to show something in the result pane
case MMC_NOTIFY_TYPE.MMCN_SHOW:
 //Data.Node.onShow(m_Console, arg, param);
 RESULTDATAITEM Item; // Result data variable.

 // Create two headers.
 MMCHeader.InsertColumn(0, "Name Type", 0, 250);
 MMCHeader.InsertColumn(1, "Name Value", 0, 150);

 // Initialize the result data variable.
 Item = new RESULTDATAITEM();

 // Create entries required for first item. Include
 // constants for relevant items in mask. Make sure
 // you use a callback for strings. Set the image to
 // the 16 X 16 pixel image.
 Item.mask = (UInt32)(RDI.STR | RDI.IMAGE | RDI.PARAM);
 Item.str = new IntPtr(−1); // MMC_CALLBACK
 Item.nImage = 0;
 Item.lParam = 0;
 Item.nCol = 0;

 // Display the first item.
 MMCResultData.InsertItem(ref Item);

 // Modify lParam member for second query.

Creating IComponent and IComponentData

282

 Item.lParam = 1;

 // Display the second item.
 MMCResultData.InsertItem(ref Item);

 // Perform the same two steps for subsequent items.
 Item.lParam = 2;
 MMCResultData.InsertItem(ref Item);
 Item.lParam = 3;
 MMCResultData.InsertItem(ref Item);
 Item.lParam = 4;
 MMCResultData.InsertItem(ref Item);
 Item.lParam = 5;
 MMCResultData.InsertItem(ref Item);
 Item.lParam = 6;
 MMCResultData.InsertItem(ref Item);
 Item.lParam = 7;
 MMCResultData.InsertItem(ref Item);

 break;

The code begins by creating two columns and giving them the names Name Type and Name Value. It creates
a new RESULTDATAITEM data structure because this information will appear in the Result pane. The
RESULTDATAITEM data structure contains an item mask that indicates the type of information the result
item will contain, the method of obtaining the information, the item image, and the item column number. The
code then uses the InsertItem() method to create eight columns worth of data on screen. The question is how
MMC knows where to find this data because it obviously doesn’t appear in this code. Look again at the
Item.str value. It contains a value of –1, which means that MMC will call upon the GetDisplayInfo() method
for the data it needs.

The GetDisplayInfo() method contains a switch statement that creates a unique entry for each row of data
inserted by the MMCN_SHOW message implementation. It uses the ResultDataItem.lParam value to
determine which row to present on screen. Here’s a sample of the presentation code:

case 0:

 // Display the NetBIOS name item.
 if (ResultDataItem.nCol == 0)
 {
 // Create the temporary data value, convert it
 // to a pointer, and then pass it to MMC.
 Temp = "NetBIOS Name";
 fixed (char* ResultData = Temp)
 {
 ResultDataItem.str = new IntPtr(ResultData);
 }
 }

 // The requester is asking for the second column.
 else
 {

 // See if there is a NetBIOS name for this item.
 if (WindowsFunctions.GetComputerNameEx(
 COMPUTER_NAME_FORMAT.ComputerNameNetBIOS,
 ComputerName,
 ref BufferSize))

Creating IComponent and IComponentData

283

 // Output the contents of the string buffer.
 fixed (char* ResultData = ComputerName.ToString())
 {
 ResultDataItem.str = new IntPtr(ResultData);
 }

 // If not, display a failure string.
 else
 {
 Temp = "Value Not Available";
 fixed (char* ResultData = Temp)
 {
 ResultDataItem.str = new IntPtr(ResultData);
 }
 }
 }
 break;

MMC will call the GetDisplayInfo() method for each column of data that the MMCN_SHOW message
implementation creates. Consequently, the first thing the code determines is which column MMC is
requesting. If you have multiple columns of data and allow the user to select the columns arbitrarily, nesting
another switch statement within the switch statement used for the row data will probably work best. In this
case, the decision is relatively simple, so the code proceeds with an if statement.

If MMC requests the first column, the code outputs a simple string telling the type of data that will appear in
the second column. When MMC requests the second column, the code calls GetComputerNameEx() to
determine the requested computer name and then outputs that value. Notice that this is another situation in
which the code must fix the memory used to hold the output string. However, instead of a byte*, we’re using a
char* for this portion of the example. MMC is full of such inconsistencies.

Testing the Snap−In within MMC

It’s finally time to see the MMC snap−in we’ve created in action. Unfortunately, MMC still doesn’t even
know that the MMC snap−in exists. If you left things up to the .NET Framework, MMC would never know
the MMC snap−in existed at all. We need one final piece of magic to make the MMC snap−in visible, and
then we have to install the MMC snap−in for use.

Let’s look at the magic first. MMC won’t know your MMC snap−in exists until you create a special registry
entry for it. This registry information appears in the \Chapter 12\MMCSample folder of the CD, along with
the sample code. Here’s what the registry entry looks like (the code will wrap in the book, so check the REG
file as well):

REGEDIT4

[HKEY_LOCAL_MACHINE\Software\Microsoft\MMC\Snapins\{B6BBA1A8−6D1C−47f9−
 A9CC−FAC427315CAF}]
"About" = "{BACD4F1D−8338−41ee−9D55−DDECE3D8BBCE}"
"NameString" = "An MMC Snap−In"
"Provider" = "DataCon Services"
"Version" = "1.0"

[HKEY_LOCAL_MACHINE\Software\Microsoft\MMC\Snapins\{B6BBA1A8−6D1C−47f9−
 A9CC−FAC427315CAF}\StandAlone]

This registry entry tells MMC the GUID of the main MMC snap−in and the About dialog. It also gives the

Testing the Snap−In within MMC

284

MMC snap−in a name that will appear in the Add Standalone Snap−in dialog box, the name of a provider, and
the version number of the MMC snap−in. The StandAlone key tells MMC that this is a stand−alone snap−in
and not an extension.

We’re ready to install the MMC snap−in for use. The CD contains a compiled version of the MMC snap−in
that you can test immediately, if desired. The following procedure tells how to install it:

Double−click the MySnapin.REG file in Windows Explorer. Windows will ask if you want to add the
registry entries to your registry.

1.

Click Yes. Windows will display a success message.2.
Locate the Register.bat file found in the \Chapter 12\MMCSample\bin\Debug folder. Double−click
this file and you’ll see a series of messages as the batch file registers the MMC snap−in. All that this
batch file is doing is calling the RegAsm and GacUtil utilities to perform the required work.

3.

Warning The number one point of failure for an MMC snap−in created with C# (once you get the code
working) is a failure to register MMCHelper.DLL and MMCHelper2.DLL (the helper DLLs) in the
GAC. It’s best if you can use the copies of the files that appear in the directory with the MMC
snap−in if you plan to create only one MMC snap−in or use the copies of the files that appear in a
centralized location if you plan to create multiple MMC snap−ins. If you fail to register the helper
DLLs, you’ll normally see the snap−in in the MMC Add Standalone Snap−in dialog box, but you
won’t be able to obtain any help information about it. This is your sign that something is drastically
wrong and you need to check the basics, including proper registration. Using an old version of the
helper DLLs is something to consider if you receive a message that that MMC snap−in failed to
initialize. You don’t need to register the helper DLLs in the registry (and it’s best if you don’t). The
example includes the Register.BAT and Unregister.BAT files in the \Chapter
12\MMCSample\bin\Debug folder on the CD as an example of how to create batch registration files
for development. You must still add the registry file manually.

Once you get the MMC snap−in installed, you can test it. The following procedure shows a sample of what
you should do to test a basic MMC snap−in:

Open MMC using the Start Ø Run command. You’ll see a blank MMC console.1.
Use the File Ø Add/Remove Snap−in command to display the Add/Remove Snap−in dialog box.
Click Add and you’ll see a list of snap−ins. The example MMC snap−in appears in the list, as shown
in Figure 12.6. If you don’t see the example MMC snap−in, it isn’t registered properly.

Figure 12.6: The Add Standalone Snap−in dialog box will contain the example snap−in.

2.

Highlight the example snap−in and click Add. The example MMC snap−in will appear in the
Standalone tab of the Add/Remove Snap−in dialog box.

3.

Testing the Snap−In within MMC

285

Click Close. You should test the About dialog at this point by highlighting the example MMC
snap−in and clicking About. If the About dialog doesn’t appear, there’s something wrong with the
code. The registry file is OK because the MMC snap−in would have never appeared otherwise. In
addition, if there had been something wrong with the registration, you should have seen a message
when you tried to add the MMC snap−in to the Add/Remove Snap−in dialog box.

4.

Close the About Dialog box, if required. Click OK in the Add/Remove Snap−in dialog box. You
should see the example MMC snap−in root node in the MMC console at this point. If you don’t,
there’s probably something wrong with the IDataObject or IComponentData implementation. The
ISnapinAbout and IComponent interfaces aren’t in use at this point. The number one cause of
problems is a bad GetDataHere() implementation.

5.

Click the root node of the example MMC snap−in. You should see output similar to that shown in
Figure 12.7. If you don’t see proper output but the MMC snap−in doesn’t fail, the problem is very
likely in the message processing for the Notify() method of either the IComponent (Result pane) or
IComponentData (Scope pane) interfaces. If the MMC snap−in does fail, begin checking for problems
in the Initialize() method of the IComponent or IComponentData interfaces.

6.

Close the MMC console without saving the settings. If the MMC snap−in registers a failure message,
the problem is likely a memory or other resource leak. Unfortunately, there aren’t any specific places
this can occur, but it usually pays to check the Notify() method of the IComponent or
IComponentData interfaces first.

Figure 12.7: The final basic check is to see if your MMC snap−in produces data.

7.

Where Do You Go from Here?

This chapter has provided you with three MMC snap−in examples. The task of writing an MMC snap−in
using .NET is both easier and harder than writing one using the tools provided with Visual C++ 6. Certainly,
the use of languages like C# and Visual Basic make the task easier because you don’t have to worry about the
low−level details that encumber Visual C++ developers. On the other hand, the lack of native support means
you have to create everything by hand and from scratch—a difficult task to say the least. Hopefully, the tools
provided in this chapter will make your task a lot easier—certainly the MMC helper DLL provided with the
CD will make it easier to create the MMC snap−in code.

The only way to learn about COM development under Visual Studio .NET and MMC snap−in development in
particular is to create some examples of your own. It’s important to start out slowly. Don’t try to create the
management snap−in for your next database application on the first try—just displaying some simple data on

Where Do You Go from Here?

286

screen for the first try is enough. Once you have the basic coding concepts down, try something more
complex—creating a graphics application is a good second project. Next, move on to something that will
actually perform useful work such as an MMC snap−in that modifies the registry or a database.

Chapter 13 begins the last part of the book. Another major omission in the .NET Framework lineup is support
for DirectX. Microsoft may have actually underestimated the number of people using DirectX for business
purposes, so support for it wasn’t included in the initial version of the .NET Framework. At the time of this
writing, there are rumors that Microsoft has started a beta for a DirectX add−on for the .NET Framework.
Unfortunately, given the complexity of DirectX and Microsoft’s current emphasis on security, you might not
see this add−on for quite some time. Part IV of the book gives you the tools you need to work with DirectX
today instead of waiting for Microsoft to deliver something tomorrow.

Where Do You Go from Here?

287

Part IV: Working with DirectX
Chapter 13: Creating DirectX Structures and Data Elements
Chapter 14: Developing DirectX Access Routines
Chapter 15: Creating 3D Applications with DirectX
Chapter 16: Extended DirectX Programming Examples

288

Chapter 13: Creating DirectX Structures and Data
Elements

Overview

The drawing features provided by Microsoft’s graphical device interface (GDI) and GDI+ are fine for simple
applications, but if you want to perform any complex drawing, you need something like DirectX. Not only
does DirectX help you create both two−dimensional (2D) and three−dimensional (3D) drawings, but it also
helps you work with sound and other media technologies. In short, DirectX is the technology of choice when
working with multimedia of any type, including both presentation graphics and games.

This chapter helps you understand the data structures and other data elements required by DirectX. Needless
to say, these data structures are similar to those used by the Win32 API, but they’re also more complex and
require more precise definition in order to work. In addition, you’ll find that DirectX is extremely math
intensive, uses new data types, and generally requires a lot more work to use than the Win32 API.

Note There isn’t any way that a few sections in a book can provide you with everything you need to know
about DirectX. The purpose of the DirectX sections in this book is to show you how to work with
DirectX in the managed environment. We’ll discuss data conversions, function declarations, and other
issues associated with using DirectX in the managed environment—just as we’ve discussed these issues
for other types of development. _Consequently, even though the examples are purposely kept simple for
demonstration purposes, you might find that these chapters lack some information you need to use
DirectX. If you’ve never used DirectX before, you’ll probably need to add to your knowledge by
looking through other books and Web sites.

We’ll also discuss some of the pitfalls of working with DirectX. Microsoft has created a powerful API in
DirectX—one that provides the developer with great access to the hardware. However, the flexibility and
power of DirectX come at a price. A DirectX implementer needs to know more about how Windows and the
hardware will react to specific changes in the environment. In addition, the DirectX implementer needs to
understand how the managed environment will affect DirectX. For example, it’s important to understand how
the transitions required for the managed environment will affect performance and how using the managed
environment changes programming techniques the developer might have used in the past. In sum, this chapter
is an introduction to the main element of any application—we discuss data and how the environment interacts
with that data.

Using the DXDIAG Utility

It might seem hard to believe, but some developers will attempt to develop applications for DirectX without
testing their hardware for DirectX compatibility first. Of course, the fact that Microsoft often hides the utilities
and other resources you need to perform such a check might contribute to the problem. Generally, you’ll find
that you need to perform a little investigative work to learn anything about DirectX—even small items, such
as the capabilities of your machine, are often hidden.

The following sections provide you with a combination of a user and a developer view of the DXDIAG
utility. This utility is an essential part of your DirectX programming experience because it tells you about
your machine. At the most basic level, it tells you whether your machine is DirectX compatible. At a higher
level, DXDIAG can tell you about the capabilities of your machine—whether it actually supports a DirectX

289

feature you want to use in your application. Finally, developers can use this utility to learn about the DLLs
and other components used for DirectX. It’s important to remember that you need this information to create a
link between the managed and unmanaged environments.

Learning More about DirectX

One of the best ways to learn about the new features of DirectX and the problems that you’ll run into is to
visit the Microsoft DirectX newsgroups. Besides providing you with the latest information, this dedicated
group of users and developers can also help you locate and squash bugs in your DirectX application. In
addition, these newsgroups can help you learn how users expect DirectX applications to react and the types of
problems you can expect to see when using specific hardware or features.

The microsoft.public.directx newsgroups help you learn about DirectX features from a user perspective. For
example, you can learn about the latest audio features in the microsoft.public.directx.audio newsgroup. The
microsoft.public.multimedia.directx newsgroups will help you with the presentation aspects of this
technology. You can even learn about multimedia programming in the
microsoft.public.multimedia.directx.danimation.programming newsgroup.

There are two places to find developer information for DirectX on the Microsoft newsgroups. For general
information about the Platform SDK functionality, look at the microsoft.public.platformsdk.directx and the
microsoft.public.platformsdk.graphics_mm.directx newsgroups. The
microsoft.public.win32.programmer.directx newsgroups contain particulars about various DirectX
programming tasks. The microsoft.public.win32.programmer.directx.ddk newsgroup will even help you learn
about driver development kit (DDK) issues.

You’ll also want to spend some time learning about DirectX on Web sites. The DirectX Programming Faq
(http://www.directxfaq.com/) contains a sorted knowledge base of information about DirectX. The DirectX
Files site (http://www.thedirectxfiles.com/) contains information for both user and developer. For example,
you can download DirectX plug−ins for your system. The developer resource section includes tips and
techniques for writing audio synthesizers, among other examples. If code is what you mainly want to see,
check the examples on Code Guru (http://www.codeguru.com/directx/index.shtml) and ActiveWin.com
DirectX (http://www.activewin.com/directx/index.shtml). Both sites include a number of DirectX examples
that should answer the most common developer questions.

The most important bits of information you can obtain from this section is the status of the drivers and DLLs
installed on your machine. More than a few developers have reported problems on the various Microsoft
DirectX newsgroups only to find that a DLL or driver on their machine was outdated. It’s important to install
and use the latest version of DirectX to obtain the best possible support for your application from the
newsgroups. Generally, updates of DirectX fix more problems than they create (although it also seems that
every new release also causes some new and not so exciting problems).

Learning about DirectX Compatibility

Developers generally have a good understanding of their system. However, it’s still important to use the
correct tool to check your system for compatibility concerns, yet the Microsoft documentation is a little light
in this area. Fortunately, all you really need to know is where to look for the information and then understand
what to do with the information you find.

Learning about DirectX Compatibility

290

The first step to check system compatibility is to start the DirectX diagnostic utility. You won’t find it on your
Start menu. Open the Run dialog box, type DXDIAG, and click OK. You’ll see a DirectX Diagnostic Tool
dialog box like the one shown in Figure 13.1. Note that the DirectX Diagnostic Tool will display a progress
bar as it checks the capabilities of your system, the drives, and the version of DirectX installed.

Figure 13.1: The DirectX Diagnostic Tool checks your DirectX installation for problems.

The first setting I always check is the DirectX Version entry near the bottom of the dialog box. You need to
go to the DirectX Web site (http://www.microsoft.com/directx/default_.asp) to verify this version number
against the current version that Microsoft supports. If you see that the Web site contains a newer version,
download it, install it, and restart your machine. Using the most current version ensures that anything you
develop will have the latest features. In addition, using the most current version generally ensures that you’ll
run into fewer bugs during your development experience.

Note The most current version of DirectX available as of this writing is version 8.1. However, this update
concentrates on 3D drawing and many of you will still need to perform 2D drawing. Visual Studio .NET
ships with DirectX 7 support, which excels at 2D drawing, so the examples in this chapter and Chapter
14 will use DirectX 7. I also tested these examples using DirectX 8.1. All of the 3D and extended
examples in Chapters 15 and 16 were written and tested using DirectX 8.1 but should run on newer
versions of DirectX as well. To use the examples in Chapters 15 and 16, you must download the latest
DirectX SDK from http://www.microsoft.com/directx/default.asp.

Notice the Next Page button at the bottom of the screen in Figure 13.1. You’ll find a button like that one on
most of the DirectX tabs. What the button doesn’t tell you is that clicking it runs a test on your system. Try
clicking it now and you’ll advance to the DirectX Files tab. If you see No Problems Found in the Notes
section, you know that test passed.

Click Next Page again and you’ll advance to the Display tab. The same success or failure message will appear
in the Notes field again. However, this time you’ll also see some diagnostic buttons, as shown in Figure 13.2.
For example, you can disable Direct3D Acceleration by clicking the associated Disable button. Before you
cripple your system, however, you’ll want to test its compatibility with DirectX. Click Test DirectDraw and
the DirectX Diagnostic Tool will perform extended tests on your system. If everything goes well, click Test
Direct3D. These tests will verify that your display adapter can work with DirectX and therefore any
application produced on your system. If you do run into problems, the DirectX Diagnostic Tool normally
provides enough information for you to fix the problem yourself or ask intelligent questions of a support
person. In some cases, you have to disable a hardware acceleration feature to gain true compatibility.

Learning about DirectX Compatibility

291

Figure 13.2: Some of the DirectX tabs contain special test buttons you can use to check compatibility.

Follow the Next Page and testing process until you get to the More Help tab. If everything passes, at this
point, your system is completely compatible with DirectX. Of course, there are differing levels of hardware
capability, so you also need to consider how much DirectX support your system provides. For example, you
might find that your sound card doesn’t provide default port acceleration. If this feature is missing, you won’t
be able to use it in your application.

Tip Sometimes you’ll want to disable a hardware feature for reasons other than compatibility. For
example, you might want to see how an application works with software emulation rather than
the faster hardware support. Disabling the hardware support helps you to check the software
emulation. In other cases, you might want to disable a hardware feature to see how a program
will react on a less capable machine. Bugs might not show up until you have disabled some of
the hardware functionality your machine provides. Some of the tabs also contain sliders that you
can use to control features such as hardware acceleration. Choosing a lower amount of
acceleration can often help in diagnosing subtle DirectX problems.

After you complete all of your tests, you can click the Save All Information button to display a Save As dialog
box. The DirectX Diagnostic Tool can save all of the test results and other information about your system as a
text file. Maintaining a copy of this text file helps you track your system in its ideal state and compare it to
results you get during later tests. Performing a comparison can help you locate potential problems caused by
system degradation.

Viewing the Drivers

Previous chapters have demonstrated that a knowledge of the files used to perform specific Win32 API tasks
is essential if you want to use the functions those files contain in your applications. Working with DirectX is
no different. However, DirectX does make it relatively easy for you to determine which files it uses and even
the version numbers of those files. Figure 13.3 shows the DirectX Files tab of the DirectX Diagnostic Tool
utility. Notice that this tab contains a complete list of the DirectX files.

Viewing the Drivers

292

Figure 13.3: The DirectX Files tab contains a list of the files used to implement DirectX on the host machine.

Unfortunately, all that this dialog shows you is the name of the file. There isn’t any way to determine what the
file does or the functions that it might contain. To learn more about the file, you need to investigate it. A first
stop is to locate the file in the System32 folder and open the Properties dialog box for it. Generally, you’ll find
some descriptive information on the Version tab.

A second step is to look for the file in the Visual Studio .NET or Platform SDK help file. If you look for the
DLL version of the file, you’ll normally find support information and other helpful tips. However, if you want
to learn how the file will affect your programming, look for the LIB file. For example, the first file in Figure
13.3 is DDraw.DLL. If you enter this name as DDraw.LIB in either of the two help files, you’ll see various
entries for interfaces, enumerations, functions, and programming tips.

Finally, you can use the Dependency Walker to view the file, just as we have for so many other DLLs in the
book. Figure 13.4 shows the DDraw.DLL file. Notice the list of function names and file dependencies.
Viewing a DLL in Dependency Walker normally provides clues that you won’t find by just looking at the help
files or performing a search online. However, you’ll want to stick with the functions that are documented for
public use, even if it takes a while to locate information about a function that looks interesting. Given that
DirectX is a little less open than the Win32 API, you’ll want to use this technique to ensure that you’re
gaining access to the full set of features the DLL has to offer.

Figure 13.4: Always use the Dependency Walker to ferret out information about the DirectX DLLs.

Viewing the Drivers

293

Tip The DirectX DLLs also contain functions that are meant for internal use only. For example, a
search through the help file didn’t yield any information about the AcquireDDThreadLock()
function shown in Figure 13.4, yet this function exists. Other DirectX DLLs use this function and
you should never call it in your application. Of course, it would help if Microsoft condescended to
document this fact. One place to look for this type of information is the Clipcode.net−Knowledge
Transfer Portal For Software Engineers (http://www.clipcode.net/) site. The
AcquireDDThreadLock() function appears on the
http://www.clipcode.net/content/directdraw_direct3d_guide/03_developing_with_directx.htm
page.

Working with the DirectX Structures

Like the Win32 API and COM, DirectX uses a number of data structures to move data from one location to
another. Unlike the Win32 API or COM, DirectX contains a relatively small number of structures, and they’re
actually organized the same way, so you’ll experience fewer problems using them. However, the data
structures tend to provide complex information because of the multimedia nature of DirectX. There are no
small data structures that carry two or three items—many of these data structures contain huge amounts of
information. This factor makes DirectX a lot harder to work with than either the Win32 API or COM.

The following sections will help you understand the DirectX data structures. We’ll begin with an overview of
the data structures. This section contains a short description of every data structure used in DirectX. You
might be surprised at how few there really are. The next section begins looking at the techniques required to
convert the data structures for managed environment use. Because the data structures are well defined and
there are so few, you’ll also find them as part of a DirectX DLL that we’ll explore in this chapter and in the
one that follows.

Note Visual Studio .NET comes with documentation for DirectX 7 and a preliminary version of DirectX 8.1.
Most of this documentation also works fine for the released version DirectX 8.1, but there are a few
changes that you’ll want to know about. The best idea for DirectX 8.1 development is to download the
current DirectX SDK from
http://msdn.microsoft.com/_library/default.asp?url=/nhp/Default.asp?contentid=28000410. This MSDN
site has a link that will help you download the current version of the SDK. Unfortunately, you’ll still
need to convert everything by hand. There are rumors that DirectX 9 will provide at least partial support
for the .NET Framework, but don’t expect to see complete support immediately. Be aware that a
complete DirectX 8.1 download is 165.7MB. Fortunately, you can perform a component download. If
you decide to perform a component download, you must download the DirectX Developer Runtime. In
addition, you’ll need one of the two language products. The Visual C++ product will prove the best
choice because it contains the header files and other detailed information you’ll need to perform
managed application conversions.

An Overview of the Data Structures

DirectX uses a total of 19 specific data structures. Many of these data structures perform multiple tasks and
the content depends on the task they’re performing at the moment. Some of the data structures weren’t used in
the past, so the documentation Microsoft provides with Visual Studio .NET reflects this fact. Newer versions
of DirectX do use more of the functions and data structures. The following list provides a short overview of
these data structures:

DDBLTBATCH DirectX uses this structure to pass blit information to the IDirectDrawSurface7.BltBatch()
method. The structure includes both a source and destination rectangle for the blit, along with the address of a

Working with the DirectX Structures

294

DirectDraw surface. Control flags determine the type of blit that occurs and there’s a variable that holds the
address of DDBLTFX structure containing additional blit effects.

Note A bit block transfer (blit) is the process of moving a bitmap from one device context to another.
For example, a blit occurs when an application moves a bitmap from memory to the display.
The blit occurs as a continuous operation. Some applications and function calls will also modify
the bitmap during a blit. For example, a function could find all occurrences of the color red and
change them to green during the blit. A blit could also change the bitmap’s location on screen,
providing an animation effect.

DDBLTFX DirectX uses this structure to pass raster operations (ROPs), effects, and override information to
the IDirectDrawSurface7.Blt() method. This structure is also used as part of the DDBLTBATCH data
structure. Essentially, this structure defines 2D drawing effects such as mirroring and rotating the image. The
structure also contains entries for Z−buffering and alpha blending, but support for these entries is nearly
non−existent in DirectX 7.

DDCAPS DirectX uses this structure to report the capabilities of the host machine using the
IDirectDraw7.GetCaps() method. The output of this call includes the capabilities of both the hardware and the
hardware emulation layer (HEL). The hardware and HEL capabilities appear in two difference copies of the
DDCAPS data structure. This structure also contains the DDSCAPS and DDSCAPS2 data structures, which
are essentially sets of flags listing specific device capabilities.

DDCOLORCONTROL DirectX relies on this data structure to define the color controls used by a number
of calls. The dwFlags member contains a list of the fields within the data structure that contain valid
information. The IDirectDrawColorControl.GetColorControls() method also uses the dwFlags memory to
indicate which controls a particular device supports.

DDCOLORKEY DirectX uses this structure to define a source color key, destination color key, or a color
space. It’s used with both the IDirectDrawSurface7.GetColorKey() and IDirectDrawSurface7.SetColorKey()
methods. This data structure also appears as part of the DDBLTFX data structure. DirectX interprets the data
structure as a color key when both the high and low range values contain the same data.

DDDEVICEIDENTIFIER2 DirectX uses this structure to obtain information about a device from a call to
the IDirectDraw7.GetDeviceIdentifier() method. The return values include information such as the driver
name and description, along with numeric data such as the driver version and the vendor identifier. You can
use this structure with the associated IDirectDraw7.GetDeviceIdentifier() method to validate problem
hardware prior to use with an application.

DDGAMMARAMP DirectX uses this data structure to pass red, green, and blue ramp data to the
IDirectDrawGammaControl.GetGammaRamp() and IDirectDrawGammaControl.SetGammaRamp() methods.
Each of the arrays in this data structure maps color values in the frame buffer to the color values passed to the
digital−to−analog converter (DAC).

DDOVERLAYFX DirectX uses this data structure to pass overlay information to the
IDirectDrawSurface7.UpdateOverlay() method. The IDirectDrawSurface7.UpdateOverlay() method modifies
the appearance or position of an overlay. The overlay must have certain visual attributes as described in the
Platform SDK documentation.

DDPIXELFORMAT DirectX uses this structure to describe the pixel format of an IDirectDrawSurface
object for the IDirectDrawSurface7.GetPixelFormat() method. This is one of the few structures to rely on
FOURCC data. It also accepts input in a number of formats under C/C++, which means that this structure is

Working with the DirectX Structures

295

one that uses unions extensively. However, unlike other data structures with unions, converting these unions
is quite easy.

DDSCAPS and DDSCAPS2 DirectX uses both of these structures to describe the capabilities of an
IDirectDrawSurface object. The DDSCAPS2 data structure provides more information and requires four
structure members. Both of these data structures appear as part of the DDCAPS data structure. The
DDSCAPS data structure also appears as part of the DDSURFACEDESC data structure, while the
DDSCAPS2 data structure appears as part of the DDSURFACEDESC2 data structure.

DDSURFACEDESC and DDSURFACEDESC2 DirectX uses both of these data structures to describe a
surface. The DDSURFACEDESC data structure is still supported for old code but is superceded by the
DDSURFACEDESC2 data structure for new code. The example code contains only the new version of the
data structure. The IDirectDraw7.CreateSurface(), IDirectDrawSurface7.SetSurfaceDesc(),
IDirectDrawSurface7.Lock(), and IDirectDrawSurface7.GetSurfaceDesc() methods all rely on the
DDSURFACEDESC2 data structure.

DDVIDEOPORTBANDWIDTH DirectX uses this structure to describe the bandwidth characteristics of an
overlay surface. The structure is used for output to a particular video−port and pixel−format configuration.
The IDirectDrawVideoPort.GetBandwidthInfo() method relies on this data structure.

DDVIDEOPORTCAPS DirectX relies on this data structure to define the capabilities and alignment
restrictions of a video port. Developers normally use this structure with the
IDDVideoPortContainer.EnumVideoPorts() method.

DDVIDEOPORTCONNECT DirectX uses this data structure to describe a video−port connection. A
developer can use this data structure with the IDDVideoPortContainer.GetVideoPortConnectInfo() method to
open the video port and then obtain information about it. The information is retrieved in an array of
DDVIDEOPORTCONNECT data structures.

DDVIDEOPORTDESC DirectX uses this data structure to describe a video−port object that the developer
wants to create. You’ll normally use this data structure with the IDDVideoPortContainer.CreateVideoPort()
method, which is used to create an IDirectDrawVideoPort object.

DDVIDEOPORTINFO DirectX uses this data structure to describe the transfer of video data to a surface.
You’ll normally use this data structure with the IDirectDrawVideoPort.StartVideo() method. This method
enables the hardware video port and begins the transfer of data to the currently specified surface.

DDVIDEOPORTSTATUS DirectX uses this data structure to define the status of a video−port object. The
status information tells whether the port is in use and includes a DDVIDEOPORTCONNECT data structure.
There’s also a flag that tells whether the port controls just the video or the Vertical Blanking Interval (VBI).
You’ll normally use this data structure with the IDDVideoPortContainer.QueryVideoPortStatus() method.

As you can see from the list, the data structures used by DirectX contain a wealth of information. The
descriptions include the call information so that you know which methods require a certain data structure. The
important concept to remember is that DirectX is a low−level API designed to make application code run
faster and to provide developers with better access to the hardware. The cost of this access is the complex data
structures we’ve just discussed.

Working with the DirectX Structures

296

Structure Conversion Essentials

DirectX is a data−intense technology in that the functions and interface methods require a lot of information
to perform the simplest tasks. The data structure has to describe every operation in detail so that only the
correct picture elements are affected by a given call. Unlike other types of computer tasks, working with
graphics means working in the worlds of both math and art, so describing a picture element is difficult, even if
you have the correct data structure to do it.

This section of this chapter discusses elements of the DirectXHelper.DLL found in the \Chapter
13\DirectXHelper folder of the source code CD. The source files actually contain a lot more code than appears
in the chapter and we’ll continue discussion of this DLL in Chapter 14. Although the example code is written
in both C# and Visual Basic, the DirectXHelper.DLL code appears only in C# for ease of conversion. Make
sure you review the source code files for full details on the DirectX implementation.

Note Just in case you think the whole experience with the FOURCC (four−character code) entries is
limited to the Windows Media Player example in Chapter 11, you’ll use them for DirectX too.
You’ll find a list of application FOURCC entries in the
ms−help://MS.VSCC/MS.MSDNVS/dx8_vb/directx_vb/extras/DirectDraw7/vbddref_0uzm.htm
help topic. Many of the media types you’ll work with depend on the FOURCC entries for
validation purposes, so it pays to become familiar with them.

Converting the DDBLTFX Data Structure

Some of the data structures aren’t all that difficult to convert. For example, the DDBLTBATCH data structure
is relatively straightforward. However, some of the data structures could give the average developer a nervous
tick after a few hours of unsuccessful conversion. One of the most complex data structures is DDBLTFX. The
structure contains five different unions, so converting it to something the managed environment can use is
difficult to say the least. You can find the Visual C++ version of this data structure at
ms−help://MS.VSCC/MS.MSDNVS/dx8_vb/directx_vb/extras/directdraw7/ddref_0xmf.htm. Listing 13.1
shows the C# version of the data structure.

Listing 13.1: The Managed Version of the DDBLTFX Data Structure

[StructLayout(LayoutKind.Sequential, Pack=1, CharSet=CharSet.Auto)]
public struct DDBLTFX
{
 public UInt32 dwSize;
 public DDFXType dwDDFX;
 public UInt32 dwROP;
 public UInt32 dwDDROP;
 public UInt32 dwRotationAngle;
 public UInt32 dwZBufferOpCode;
 public UInt32 dwZBufferLow;
 public UInt32 dwZBufferHigh;
 public UInt32 dwZBufferBaseDest;
 public UInt32 dwZDestConstBitDepth;

 // This is the first of five unions.
 //union
 //{
 // DWORD dwZDestConst;
 // LPDIRECTDRAWSURFACE lpDDSZBufferDest;
 //} DUMMYUNIONNAMEN(1);
 public UInt32 dwZDestConst;

Structure Conversion Essentials

297

 public UInt32 dwZSrcConstBitDepth;

 // This is the second of five unions.
 //union
 //{
 // DWORD dwZSrcConst;
 // LPDIRECTDRAWSURFACE lpDDSZBufferSrc;
 //} DUMMYUNIONNAMEN(2);
 public UInt32 dwZSrcConst;

 public UInt32 dwAlphaEdgeBlendBitDepth;
 public UInt32 dwAlphaEdgeBlend;
 public UInt32 dwReserved;
 public UInt32 dwAlphaDestConstBitDepth;

 // This is the third of five unions.
 //union
 //{
 // DWORD dwAlphaDestConst;
 // LPDIRECTDRAWSURFACE lpDDSAlphaDest;
 //} DUMMYUNIONNAMEN(3);
 public UInt32 dwAlphaDestConst;

 public UInt32 dwAlphaSrcConstBitDepth;

 // This is the forth of five unions.
 //union
 //{
 // DWORD dwAlphaSrcConst;
 // LPDIRECTDRAWSURFACE lpDDSAlphaSrc;
 //} DUMMYUNIONNAMEN(4);
 public UInt32 dwAlphaSrcConst;

 // This is the fifth of five unions.
 //union
 //{
 // DWORD dwFillColor;
 // DWORD dwFillDepth;
 // DWORD dwFillPixel;
 // LPDIRECTDRAWSURFACE lpDDSPattern;
 //} DUMMYUNIONNAMEN(5);
 public UInt32 dwFillData;

 public DDCOLORKEY ddckDestColorkey;
 public DDCOLORKEY ddckSrcColorkey;
}

Note The reader will see the use of the term blt in sections of the code. The terms blit and blt are synonymous.
Microsoft uses the two terms interchangeably for function calls and in their documentation. I chose blit
as the more understandable term for use in the text of this book. However, the source code will contain a
mix of both terms as appropriate.

As you can see, the data structure has five unions, all of which we convert to UInt32 values. Generally, you’ll
find that this form of the structure works well until you need to provide one of the IDirectDrawSurface data
members. So, let’s look at how this data structure is used. The key to the data structure is the dwDDFX
member. This member describes what type of work the function will perform. The following enumeration
shows the types of tasks that the structure can request the function perform:

Structure Conversion Essentials

298

public enum DDFXType
{
 //If stretching, use arithmetic stretching along the y−axis for this
 // blt.
 DDBLTFX_ARITHSTRETCHY = 0x00000001,

 // Do this blt mirroring the surface left to right. Spin the
 // surface around its y−axis.
 DDBLTFX_MIRRORLEFTRIGHT = 0x00000002,

 // Do this blt mirroring the surface up and down. Spin the surface
 // around its x−axis.
 DDBLTFX_MIRRORUPDOWN = 0x00000004,

 // Schedule this blt to avoid tearing.
 DDBLTFX_NOTEARING = 0x00000008,

 // Do this blt rotating the surface one hundred and eighty degrees.
 DDBLTFX_ROTATE180 = 0x00000010,

 // Do this blt rotating the surface two hundred and seventy degrees.
 DDBLTFX_ROTATE270 = 0x00000020,

 // Do this blt rotating the surface ninety degrees.
 DDBLTFX_ROTATE90 = 0x00000040,

 // Do this z blt using dwZBufferLow and dwZBufferHigh as range
 // values specified to limit the bits copied from the source
 // surface.
 DDBLTFX_ZBUFFERRANGE = 0x00000080,

 // Do this z blt adding the dwZBufferBaseDest to each of the sources
 // z values before comparing it with the destination z values.
 DDBLTFX_ZBUFFERBASEDEST = 0x00000100
}

As you can see, the enumeration presents a series of standard graphic manipulation tasks, including rotation
and mirroring. Consequently, the Z−buffering operations defined by the first two unions in the DDBLTFX
data structure are only used for a subset of the tasks that the structure can request of the function. The alpha
blending represented by the second two unions doesn’t even have any tasks associated with it, so the function
would need to support the task directly. There isn’t any actual support for either Z−buffering or alpha
blending in the IDirectDrawSurface7.Blt() method, so the value of these entries in the DDBLTFX data
structure is minimal.

Note Other data structures, such as DDOVERLAYFX, use the same union to allow use of either a constant or
an IDirectDrawSurface object. In most cases, you can simply override the IDirectDrawSurface member
entry and use a UInt32 to represent the value. Because the technique used is always the same, we won’t
look at other instances of this override in the chapter.

Eliminating Z−buffering and alpha blending leaves the fifth union in the DDBLTFX data structure—a
problem because there’s support for this feature. Listing 13.1 shows what you need to support the three fill
options because they represent the options you’ll use most often. If you decide to pass a pattern to the
function, you can create an IntPtr to it and then convert the IntPtr to a number (which won’t always work) or
you can create a special version of the structure that includes the interface. The best idea is to try the three fill
options first to see if they’ll work for your application.

Structure Conversion Essentials

299

Converting the DDCAPS Data Structure

The DDCAPS data structure mostly contains members of types that we’ve already discussed at length, so for
the most part, conversion is easy. However, the data structure contains a constant that we have to define
because it’s based on an equation that could change. The first bit of code for this conversion appears in the
Functions class as follows:

public const int DD_ROP_SPACE = 256/32;

Now that we have the size of these arrays defined, we’ll have to define the arrays. In previous chapters, we’ve
looked at a number of ways to get around the whole problem of arrays, but this is a case where the option
doesn’t exist. Consequently, it’s time to look at the rather thorny issue of defining an unmanaged array in the
managed environment. Listing 13.2 shows the code we’ll use to handle the arrays in this data structure (there
are five of them).

Listing 13.2: Converting the DDCAPS Data Structure Arrays

//DWORD dwRops[DD_ROP_SPACE];
[MarshalAs(UnmanagedType.ByValArray,
 ArraySubType=UnmanagedType.I4,
 SizeConst=Functions.DD_ROP_SPACE)]
public UInt32 []dwRops;

The magic of this solution is all in the [MarshalAs] attribute. However, it begins with a correct definition of
the array type. The original array definition is commented out in the code. The new definition relied on a
UInt32 array declaration. You must define it as UInt32 in this case or the code won’t work. The [MarshalAs]
attribute tells CLR that this is an array passed by value to the function. There are also ways to pass the array
by reference. Notice the use of the new ArraySubType argument. It’s essential to include this argument or
CLR won’t know how big to make the individual array members. Finally, we use the SizeConst argument to
define the size of the array.

Note Other DirectX data structures, such as the DDGAMMARAMP data structure, use the
same array technique shown in this section. We’ll only discuss one version of this array
technique. However, you’ll find it in use throughout the example code. DirectX relies
heavily on array structures, all of which require some type of special handling.

If you define the array correctly, DirectX will at least recognize the resulting data structure. However, before
you can use this data structure, you need to initialize the members, including the arrays. A sure sign that
you’ve forgotten to perform this task is a null reference error message when you make the call. Listing 13.3
shows some typical initialization code for the DDCAPS data structure.

Listing 13.3: Initializing the DDCAPS Data Structure

DDCAPS DevCaps; // A device capabilities data structure.

// Initialize the data structure.
DevCaps = new DDCAPS();

// Initialize the arrays.
DevCaps.dwRops = new UInt32[Functions.DD_ROP_SPACE];
DevCaps.dwSVBRops = new UInt32[Functions.DD_ROP_SPACE];
DevCaps.dwVSBRops = new UInt32[Functions.DD_ROP_SPACE];

Structure Conversion Essentials

300

DevCaps.dwSSBRops = new UInt32[Functions.DD_ROP_SPACE];
DevCaps.dwNLVBRops = new UInt32[Functions.DD_ROP_SPACE];

// Initialize the internal data structures.
DevCaps.ddsOldCaps = new DDSCAPS();
DevCaps.ddsCaps = new DDSCAPS2();

// Get the size of the data structure.
DevCaps.dwSize = (UInt32)Marshal.SizeOf(DevCaps);

As you can see from the example code, the initialization begins when the code creates a new instance of the
DDCAPS data structure. The arrays are also initialized using the proper number of array elements. CLR is
unlikely to detect problems in this area. It’s theoretically possible to create array elements of the wrong type
or size, even at this point in the application. Don’t forget to initialize the data structures contained within the
DDCAPS data structure. The code shows that both data structures are initialized using the proper data types.
Finally, the code must set the size of the data structure. Figure 13.5 shows an initialized version of this data
structure.

Previously, we had discussed a problem using the Marshal.SizeOf() function on structures containing arrays.
The [MarshalAs] attribute defines the size of the array, so this problem no longer exists. However, we have a
new problem. The [MarshalAs] attribute gives the developer a false sense of security because the compiler no
longer complains about the arrays. Using arrays in a data structure is so error prone that you should only use
them as a last resort, as we have in this instance. Always compare the final size of the data structure (using the
value in the DevCaps.dwSize variable in this case) against an unmanaged equivalent (created in C/C++ in
most cases) to ensure that the managed version is correct.

Figure 13.5: It’s important to initialize every member of the DDCAPS data _structure.

Converting the DDDEVICEIDENTIFIER2 Data Structure

The DDDEVICEIDENTIFIER2 data structure is relatively short, but it contains a number of odd conversions
that will almost certainly cause trouble for some developers. The unmanaged version of this data structure
appears at ms−help://MS.VSCC/MS.MSDNVS/dx8_vb/directx_vb/extras/directdraw7/ddref_4fg7.htm.
Listing 13.4 shows the managed conversion of the data structure.

Listing 13.4: The DDDEVICEIDENTIFIER2 Data Structure Is Short and Complex

[StructLayout(LayoutKind.Sequential, Pack=1, CharSet=CharSet.Auto)]
public struct DDDEVICEIDENTIFIER2
{

Structure Conversion Essentials

301

 //char szDriver[MAX_DDDEVICEID_STRING];
 [MarshalAs(UnmanagedType.ByValTStr,
 SizeConst=Functions.MAX_DDDEVICEID_STRING)]
 public String szDriver;

 //char szDescription[MAX_DDDEVICEID_STRING];
 [MarshalAs(UnmanagedType.ByValTStr,
 SizeConst=Functions.MAX_DDDEVICEID_STRING)]
 public String szDescription;

 //LARGE_INTEGER liDriverVersion;
 public Int64 liDriverVersion;

 public UInt32 dwVendorId;
 public UInt32 dwDeviceId;
 public UInt32 dwSubSysId;
 public UInt32 dwRevision;
 public GUID guidDeviceIdentifier;
 public UInt32 dwWHQLLevel;
}

The first conversion problem in the DDDEVICEIDENTIFIER2 data structure is the two char arrays. We
could create an array, use one of the techniques we used in previous chapters, or try the TCHAR method we
used for the WaveCaps example in Chapter 11. It turns out that the TCHAR method works in this case. All
you need to do is marshal the data as an UnmanagedType.ByValTStr type and declare a character array length
using the SizeConst field. However, this method doesn’t always work and you should use it with care.

One of the more interesting problem areas with the DDDEVICEIDENTIFIER2 data structure is the
LARGE_INTEGER member, shown commented out in Listing 13.4. You might expect this member to
convert directly to a managed type, but the declaration for this variable type tells a different story. Here’s the
C/C++ code for the LARGE_INTEGER data type:

#if defined(MIDL_PASS)
typedef struct _LARGE_INTEGER {
#else // MIDL_PASS
typedef union _LARGE_INTEGER {
 struct {
 DWORD LowPart;
 LONG HighPart;
 };
 struct {
 DWORD LowPart;
 LONG HighPart;
 } u;
#endif //MIDL_PASS
 LONGLONG QuadPart;
} LARGE_INTEGER;

This is a situation in which you could quickly become mired in detail by trying to emulate the precise details
of the LARGE_INTEGER data type when it really isn’t necessary to do so. The .NET Framework provides a
suitable alternative for this data type that you can use without creating the strange−looking data structure
shown in the example code. The clue for this conversion comes from the help file at
ms−help://MS.VSCC/MS.MSDNVS/helplib/largeint_72lu.htm.

Structure Conversion Essentials

302

The key concept you need to consider is that this data type was created to help compilers without native
64−bit data types handle an integer of that size. Also notice that the description calls for a 64−bit signed
integer, not an unsigned integer. You can’t obtain these details by looking at the header file alone. Armed with
this information, we can use a simple Int64 data type for the managed version of the data structure.

The final problem for this data structure is the use of a globally unique identifier (GUID) as one of the return
types. A GUID contains a 128−bit numeric value with specific fields. Because there isn’t any way to represent
this value as a native type, we need to create a structure. Here’s the data structure for a GUID used by this
example:

[StructLayout(LayoutKind.Sequential, Pack=1, CharSet=CharSet.Auto)]
public struct GUID
{
 public UInt32 Data1;
 public UInt16 Data2;
 public UInt16 Data3;

 [MarshalAs(UnmanagedType.ByValArray,
 ArraySubType=UnmanagedType.I1,
 SizeConst=8)]
 public Byte [] Data4;
}

As you can see, the first three fields are basic integer types. The fourth field is an array of eight byte values.
There are a number of ways to represent this value, but using an array provides the best value in this case. One
idea you might consider if you work with GUIDs a lot is to convert this structure into a class. The class would
need functions to convert the GUID to a string and a string to a GUID. This exercise is left to the reader.

Defining RECT

There’s one data structure that you’ll see used as part of many of the DirectX data structures, RECT. Actually,
this data structure is used with the Win32 API and COM as well, so it pays to place it in a common Windows
library if you build one. The RECT data structure simply defines a rectangular area. It’s normally used with
graphic applications, but the actual location of the rectangle doesn’t matter. Here’s the definition of RECT
that we’ll use for DirectX purposes:

[StructLayout(LayoutKind.Sequential, Pack=1, CharSet=CharSet.Auto)]
public struct RECT
{
 public Int32 left;
 public Int32 top;
 public Int32 right;
 public Int32 bottom;
}

As you can see, there isn’t anything complicated about this data structure. However, this particular data
structure has actually caused some developers problems, mainly because of the data types used. Always use
an Int32 data type for the RECT structure members.

Understanding DirectX Data Pitfalls in the Managed
Environment

Structure Conversion Essentials

303

The DirectX programming environment presents a number of new challenges to the developer. Of course,
working with DirectX itself can be a challenge because there are a number of issues to consider. However, the
managed environment brings several new challenges and that’s what we consider in this section.

One of the most important issues is performing the data conversions correctly. A DirectX application relies
heavily on numeric data. It isn’t always easy to tell when a data structure has returned the wrong information.
When you convert a data structure that has at least some string data, the string serves as a means for detecting
some types of errors. The pure numeric nature of many DirectX data structures makes this impossible.
Consequently, you need to know the values of at least some of the numeric fields so that you can verify that
the rest of the data structure contains good data. In sum, data validation is essential, but difficult.

We saw in the section “Converting the DDCAPS Data Structure" that DirectX also relies heavily on arrays
that you can’t dismiss, convert to something else, or define inline. This section shows one method for
converting an array from a managed version to an unmanaged equivalent. However, the failure points in this
conversion technique are many. For example, if you choose the wrong managed data type, the wrong
ArraySubType argument value, or the wrong SizeConst argument value, the DirectX function will receive an
array with incorrect data values. DirectX is very likely to go along with this error in most cases. The only
error that it might detect is an incorrect SizeConst argument value. The result is that the display could act
erratically, you might see data damage, or the application might not work at all.

Another problem is that you can actually overwork the data structures. One such example is the
LARGE_INTEGER data type. The reason that the C/C++ headers create such a complex structure for this
data type is that many C/C++ compilers don’t support 64−bit integers natively. This concept is something you
should keep in mind as you create data structures. For example, you might find the need to use a Currency
data type in one of the structures. This is a data type that some C/C++ compilers don’t support natively, yet
the support is easily accessible from the .NET Framework. In sum, don’t always re−create everything you find
in the header files because you won’t always need to do so.

Sometimes the data conversion problem isn’t one of creating a managed version of an unmanaged data
structure. For example, converting the elements in the DDPIXELFORMAT data structure is relatively easy.
Coming up with a name for the new member is tough. Here are two examples of the unions that appear in this
data structure:

//union
//{
// DWORD dwRGBBitCount;
// DWORD dwYUVBitCount;
// DWORD dwZBufferBitDepth;
// DWORD dwAlphaBitDepth;
// DWORD dwLuminanceBitCount;
// DWORD dwBumpBitCount;
//} DUMMYUNIONNAMEN(1);
public UInt32 dwCountDepthData;

//union
//{
// DWORD dwRBitMask;
// DWORD dwYBitMask;
// DWORD dwStencilBitDepth;
// DWORD dwLuminanceBitMask;
// DWORD dwBumpDuBitMask;
//} DUMMYUNIONNAMEN(2);
public UInt32 dwMaskData1;

Structure Conversion Essentials

304

Needless to say, you can’t use the same names as before because the union includes too many names to fit
comfortably on a single line. Fortunately, all of the values are of the same type, which makes the conversion
easy. In this case, I chose a generic name that appears to fit the functionality offered by each of the members.
However, it’s a less−than−perfect solution. Make sure you retain the original code as shown in the example
when you rename a variable. Otherwise, other developers will have a difficult time reading your code.

A final area of concern for .NET developers who want to use DirectX is the use of pointers. It’s important to
remember how both .NET and the unmanaged environment work with pointers. In some cases, you might
have to go back to a data structure and use an IntPtr type in place of the custom type you previously defined.
When using any pointer, make sure you observe these rules:

Allocate memory if the called function will write to a buffer or provide other feedback.•
Free any memory that you allocate.•
Pay close attention to the flow of pointers in a DirectX application because the function may provide
you with a pointer into external memory.

•

Use pinning when necessary to ensure that the Garbage Collector doesn’t free memory it thinks is
unused.

•

Validate buffer sizes using test programs written in unmanaged Visual C++ whenever possible.•
Don’t count on the documentation to provide accurate values of buffer size.•
Use the C/C++ headers to check pointers values whenever possible.•
Sometimes you’ll need to use something other than an IntPtr, as in the case of some handle types used
by the Win32 API.

•

Where Do You Go from Here?

We began this chapter by addressing a very simple issue, DirectX compatibility and functionality. Your
hardware has to provide basic DirectX compatibility in order to create even a simple application. In addition,
it must provide access to specific features if you want to use those features within your application. As you
test your hardware, you begin to see which DLLs are in use and learn about DirectX features—it’s a good first
step to learning about DirectX. If you haven’t already checked your hardware and learned which features it
supports, now might be a good time to do so.

This chapter has also helped you understand the programming requirements for DirectX data structures and
data elements. From our discussion, you learned that DirectX provides the developer with added flexibility
but that this flexibility comes at the price of stricter programming requirements for the data structures and
other data elements. In general, you’ll find that the managed environment works well with DirectX as long as
you take time to create the proper data structures first.

Besides checking your hardware, you’ll want to perform a few other tasks before you move on to the next
chapter. Make sure you check out all of the Web sites presented in this chapter because they contain helpful
information you can use to make your DirectX programming experience better. In addition, fill in any gaps in
your knowledge about DirectX (the essentials) by looking at a DirectX−specific reference. Most of these
books are huge for good reason—DirectX is a complex topic.

Of course, understanding the data structures used by an API is only one step in learning to use it. DirectX is a
complex programming environment that uses its own set of rules for working with both the Win32 API and
the underlying hardware. Chapter 14 is going to show you how to use what you know now and combine it
with some simple DirectX calls. In short, this is the first chapter where you’ll really begin working with

Where Do You Go from Here?

305

DirectX in any meaningful way.

Where Do You Go from Here?

306

Chapter 14: Developing DirectX Access Routines

Overview

Before you can use DirectX, you need to know about the functions it provides and how to access them.
Learning how to use DirectX in the managed environment will test most of the knowledge you’ve acquired
throughout the book because it uses a variety of techniques to communicate with the client application. For
example, many of the DirectX enumeration functions rely on callbacks, which is a technique we haven’t used
a lot for the Win32 API calls in the book. You’ll also find some direct call functions, some functions that
require complex structures, and even some Component Object Model (COM) functionality. DirectX uses all
of the tricks we’ve learned so far.

Note Most of the work you’ll perform with DirectX involves COM. If you look at the data structure
descriptions in Chapter 13, you’ll notice that many of them discuss interface methods, not
functions found within DLLs. However, DirectX isn’t a pure COM environment, so we’ll visit
the non−COM elements first and then discuss the COM elements. Because this chapter focuses
on managed application access to DirectX rather than on using DirectX in applications, it may
seem that we’re spending an excessive amount of time on areas you won’t use very often. It’s
important to provide a complete picture of DirectX so you can use all of the features it provides
within your managed application.

This chapter introduces you to DirectX version 7 programming—we’ll discuss version 8.1 development in
Chapter 15. We’ll work with the DirectX functions, including the callback functions. The chapter will also
help you understand the DirectX COM connection. In fact, this is the only connection that Visual Basic
developers used to access DirectX in the past. The COM connection is important, and we’ll look at the various
interfaces used to implement it. Finally, you’ll learn how to work with DirectX by creating several example
programs. These examples aren’t complex or awe inspiring, but they do show you how DirectX works in the
managed environment.

Tip Microsoft constantly updates the DirectX SDK. You can find the latest version, 8.1b (as of this writing),
at http://www.microsoft.com/downloads/release.asp?ReleaseID=40153&area=search&ordinal=2. The
latest version includes mainly bug fixes, so there is no visible difference between it and original the 8.1
version. Consequently, this chapter will treat all 8.1 versions the same for discussion purposes.

Working with DirectX Functions

Unlike many parts of the Win32 API, the DirectX functions don’t actually work with any data. The main
purpose of these functions is to create objects and to request information about the DirectDraw−compatible
hardware. Consequently, you’ll use these functions once in each application. In fact, as we’ll see in the section
entitled “Working with the DirectX Interfaces and Classes,” you can actually get by without using any of
these functions at all if you take a pure COM approach to application development.

The following sections describe each of the DirectX functions, specifically those used for DirectDraw, in
detail. Once you know about the functions, I’ll show you the function declarations required to use them. The
final section tells you about the special return values used by DirectX functions. You’ll find all of the code for
the listings in this section in the \Chapter 14\DirectXHelper folder of the CD.

307

DirectDrawCreate() and DirectDrawCreateEx()

There are two functions you can use to create a DirectDraw object if you don’t want to use the pure COM
method: DirectDrawCreate() and DirectDrawCreateEx(). The latest version of the DirectX API supports both
methods, but Microsoft recommends using the DirectDrawCreateEx() function because it returns an object
with full Direct3D support. The DirectDrawCreate() function provides support for 2D drawing only.

Both functions require a globally unique identifier (GUID) as input for the first argument. The GUID points to
a device driver—a requirement if the host system provides support for more than one display device. Setting
this argument to null tells DirectX to use the active driver. You can also specify one of two constant values to
place the system in a test mode: hardware (DDCREATE_HARDWAREONLY) or software
(DDCREATE_EMULATIONONLY). Because you can supply more than one type of input for this argument,
the example provides two overrides of each function.

The second argument is an IDirectDraw7 interface pointer. You’ll need to provide this object reference as an
Object or as an IntPtr. The example code uses an Object for ease of conversion.

The DirectDrawCreateEx() function includes a third argument not included with the DirectDrawCreate()
function. The iid argument contains the Interface Identifier (IID) of the DirectDraw 7 object. Consequently,
you must always use the IID_IDirectDraw7 constant defined in the library for this argument. The example
defines this entry as a GUID structure, which is correct for the managed environment. However, the Platform
SDK documentation describes the entry as a REFIID type. It isn’t until you spend some time wandering
through the C/C++ header files that you discover the two are equivalent in this case. Of course, creating a
constant GUID value presents a problem for C# developers. Visual C++ developers have the
DEFINE_GUID() macro they can use to create a constant GUID value, but C# doesn’t define this mechanism.
You can begin solving the problem by creating a special variable as shown here:

// This is a constant value substitute for the IID_IDirectDraw7
// iid value.
public static GUID IID_IDirectDraw7 =
 CreateIID.DEFINE_GUID(0x15e65ec0,0x3b9c,0x11d2,0xb9,
 0x2f,0x00,0x60,0x97,0x97,0xea,0x5b);

As you can see, we make a static GUID variable equal to the output of a class function. There are a number of
other ways to perform this task, but using a static class member function proves the best because you can hide
the implementation details from the user. Listing 14.1 shows the class definition.

Listing 14.1: Defining an IID Constant Value

class CreateIID
{
 public static GUID DEFINE_GUID(UInt32 Data1In,
 UInt16 Data2In,
 UInt16 Data3In,
 Byte Data4_0In,
 Byte Data4_1In,
 Byte Data4_2In,
 Byte Data4_3In,
 Byte Data4_4In,
 Byte Data4_5In,
 Byte Data4_6In,
 Byte Data4_7In)
 {
 GUID OutData = new GUID(); // Create the GUID.

DirectDrawCreate() and DirectDrawCreateEx()

308

 // Assign the IID_IDirectDraw7 values.
 OutData.Data1 = Data1In;
 OutData.Data2 = Data2In;
 OutData.Data3 = Data3In;

 // Remember to create the array and then assign
 // values to it.
 OutData.Data4 = new Byte[8];
 OutData.Data4[0] = Data4_0In;
 OutData.Data4[1] = Data4_1In;
 OutData.Data4[2] = Data4_2In;
 OutData.Data4[3] = Data4_3In;
 OutData.Data4[4] = Data4_4In;
 OutData.Data4[5] = Data4_5In;
 OutData.Data4[6] = Data4_6In;
 OutData.Data4[7] = Data4_7In;

 // Output the result.
 return OutData;
 }
}

Note that the class itself is hidden from view, but the DEFINE_GUID() method is visible internally. The
DEFINE_GUID() method works precisely like the DEFINE_GUID() macro used by Visual C++, so you can
transfer the data for IID calls to that macro directly to a C# application that incorporates this class. This is yet
another way to create macro substitutes for the managed environment.

The DirectDrawCreate() and DirectDrawCreateEx() functions both include the same final argument and you
must set it to null in all cases. The pUnkOuter argument is supposed to provide aggregation support for a
future version of DirectX. The current version doesn’t support this feature.

DirectDrawCreateClipper()

This function creates a DirectDrawClipper object, which describes a clipping area on the screen. DirectX
supports two types of DirectDrawClipper objects: dependent and independent. Using this function creates an
independent DirectDrawClipper object. A developer would use the IDirectDraw7.CreateClipper() method to
create a dependent object.

The advantage of using an independent DirectDrawClipper object is that you can clip an area in any
DirectDraw object. The disadvantage is that you have to manually release the object reference or wait until
DirectX does it for you when the application terminates. When an application uses a dependent
DirectDrawClipper object, the object is destroyed along with the DirectDraw object. There’s less chance of a
memory leak when you use this method of working with the DirectDrawClipper object, but this method could
use more resources.

The Platform SDK documentation shows three arguments for the DirectDrawCreateClipper() function.
However, only the second argument, lplpDDClipper, is actually used _by the function. This argument
contains a pointer to a DirectDrawClipper object. You must set the dwFlags argument to 0 and the pUnkOuter
argument to null. The dwFlags argument could eventually modify the behavior of this function, much as using
the special flag values for the DirectDrawCreate() and DirectDrawCreateEx() functions modifies their
behavior. Likewise, the pUnkOuter argument will provide aggregation support in a future version of DirectX.

DirectDrawCreateClipper()

309

DirectDrawEnumerate() and DirectDrawEnumerateEx()

Both of these functions initiate an enumeration sequence similar to other enumerations we’ve discussed in the
book. The enumeration provides information about the DirectX−capable devices that are installed on the host
system. The DirectDrawEnumerate() function relies on the DDEnumCallback() function to handle the
callback. Likewise, the DirectDrawEnumerateEx() function relies on the DDEnumCallbackEx() function to
handle the callback. We discuss both callback functions in the section entitled "Creating DirectX Callback
Function Prototypes" later in this chapter.

Note The DirectDrawEnumerate() function is superceded by the DirectDrawEnumerateEx() function. Even
though DirectX still supports the DirectDrawEnumerate() function, you should use the
DirectDrawEnumerateEx() function in all new code. The example library contains a function declaration
for only the DirectDrawEnumerateEx() function.

The DirectDrawEnumerateEx() function requires three arguments as input. The first is the address of a
callback function. We’ll create this callback as we did all of the examples in Chapter 5. This means creating a
delegate and then a handler based on that delegate. The lpContext contains the address of an
application−specific value that you can pass to the callback function each time DirectX calls it. Generally,
you’ll only use this argument if the callback function requires special data. Finally, you can pass flags in the
dwFlags argument that changes the scope of the enumeration. The default value of 0 enumerates only the
primary display device. The following list describes the other flag values:

DDENUM_ATTACHEDSECONDARYDEVICES Lists any display devices that are part of the Windows
Desktop. For example, it would list a second display adapter but not an inactive 3D accelerator.

DDENUM_DETACHEDSECONDARYDEVICES Lists any display devices that are installed on the host
system but aren’t part of the Windows Desktop. For example, this flag would list an inactive 3D accelerator
and other support hardware, but it won’t list a second display adapter. To list all of the display devices, you
must combine this flag with the DDENUM_ATTACHED−SECONDARYDEVICES flag.

DDENUM_NONDISPLAYDEVICES Lists all non−display DirectX−capable devices, but it won’t list any
of the display devices. If you want to list all of the DirectX−capable devices on the host system, you must
combine all three flags.

Function Declarations

At this point, you have a good idea of how the various DirectX functions work, so it’s time to see how to
declare them. Listing 14.2 shows typical DirectX function declarations. I say typical because some of the
functions will require more than one implementation to satisfy some development needs. In fact, some
functions require at least two declarations for a minimal implementation.

Listing 14.2: The DirectX Specific Function Declarations

/// <summary>
/// This function creates an instance of a DirectDraw object. The
/// object doesn’t include Direct3D support.
/// </summary>
[DllImport("DDraw.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DirectDrawCreate(GUID lpGUID,
 Object lplpDD,
 IntPtr pUnkOuter);

DirectDrawEnumerate() and DirectDrawEnumerateEx()

310

[DllImport("DDraw.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DirectDrawCreate(IntPtr NO_GUID,
 Object lplpDD,
 IntPtr pUnkOuter);

/// <summary>
/// This function creates an instance of a DirectDraw object that
/// includes Direct3D support. Always used the IID_IDirectDraw7
/// constant for the third argument.
/// </summary>
[DllImport("DDraw.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DirectDrawCreateEx(GUID lpGUID,
 Object lplpDD,
 GUID iid,
 IntPtr pUnkOuter);

[DllImport("DDraw.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DirectDrawCreateEx(IntPtr NO_GUID,
 Object lplpDD,
 GUID iid,
 IntPtr pUnkOuter);

/// <summary>
/// This function creates a DirectDrawClipper object, which
/// describes a clipping area on the screen.
/// </summary>
[DllImport("DDraw.DLL", CharSet=CharSet.Auto, SetLastError=true)]
public static extern Int32 DirectDrawCreateClipper(
 UInt32 dwFlags,
 Object lplpDDClipper,
 IntPtr pUnkOuter);

/// <summary>
/// This function initiates an enumeration sequence that
/// provides information about the DirectX capable devices
/// that are installed on the host system.
/// </summary>
[DllImport("DDraw.DLL", CharSet=CharSet.Auto, SetLastError=true,
 EntryPoint="DirectDrawEnumerateExA")]
public static extern Int32 DirectDrawEnumerateEx(
 Callbacks.DDEnumCallbackEx lpCallback,
 IntPtr lpContext,
 DDEnumType dwFlags);

All of these functions require some level of conversion. However, the DirectDrawCreate() and
DirectDrawCreateEx() functions require multiple implementations because of the GUID pointer required as
the first argument. We need some way to pass a null value to DirectX, and the best way to do that is to use an
IntPtr. Remember to set the pUnkOuter argument _to IntPtr.Zero in all cases because this feature isn’t
implemented. Also, you must use the IID_IDirectDraw7 constant for the iid argument for the
DirectDrawCreateEx() function.

Warning Many of the DirectX function calls aren’t implemented as Unicode calls. The
DDraw.DLL contains the proper Unicode function entry, but the function itself
returns an error message. What this means is that you’ll receive a return value of
E_NOTIMPL (0x80004001) when you call the function—even if you provide the
correct input values. This error number isn’t registered as one of the errors that
DirectX will return, which makes it even harder to troubleshoot. In fact, it’s an

DirectDrawEnumerate() and DirectDrawEnumerateEx()

311

error that you won’t receive once your application is debugged and running.
However, if you see this error during development, make sure you’ve added an
EntryPoint argument to the [DllImport] attribute as shown for the
DirectDrawEnumerateEx() function in Listing 14.2. This argument ensures that
your application calls the correct function. Generally, you’ll find that the error
message goes away and you’ll never see it again (at least not in this application).

The DDEnumCallbackEx() function contains more managed−code−specific changes than the other functions
we have discussed. As previously mentioned, we’re passing a pointer to a callback function delegate as the
first argument. To make the code easier to read, use, and take apart for other uses, I decided to place the
callback functions in a separate class (in a separate file). The Callbacks.DDEnumCallbackEx() member
contains the definition of the DDEnumCallbackEx() callback function. The example also uses a special
enumeration to ensure that users of the library use the correct value for the third argument. Here’s the
definition of the DDEnumType enumeration:

public enum DDEnumType
{
 // Normally, this flag isn’t required. Because we’re using an
 // enumeration we need some way of listing only the primary display
 // device.
 DDENUM_NONE = 0x00000000,

 // This flag causes enumeration of any GDI display devices which are
 // part of the Windows Desktop
 DDENUM_ATTACHEDSECONDARYDEVICES = 0x00000001,

 // This flag causes enumeration of any GDI display devices which are
 // not part of the Windows Desktop
 DDENUM_DETACHEDSECONDARYDEVICES = 0x00000002,

 // This flag causes enumeration of non−display devices
 DDENUM_NONDISPLAYDEVICES = 0x00000004,

 // This flag isn’t part of the listing found in the C/C++ header,
 // but it makes working with the numeration easier.
 DDENUM_ALL_DEVICES = 0x00000007
}

Function Return Values

You might wonder why there’s a separate section on return values in this chapter considering the amount of
time we’ve spent looking at them in the past. DirectDraw relies on a common Visual C++ macro that we
haven’t discussed yet to create most of the error codes that it uses. I say most of the error codes, but some
don’t use the macro—they’re based on something else. Confused yet? Don’t be—we’ll discuss the origins of
the various error codes.

The first error code we’ll discuss is DD_OK. This is the error code that you’ll receive for successful
completion of a function call. When you look for DD_OK in the DDraw.H file, you’ll find that it’s equal to
S_OK, which isn’t much help. The definition for S_OK appears in WinError.H. The definition is a cast to an
HRESULT value of 0. Because C# doesn’t support HRESULT and the value of S_OK is unlikely to change
anytime soon, we can simply declare the value of DD_OK as 0. A few functions can return DD_FALSE.
You’ll follow essentially the same route we used for DD_OK to determine that DD_FALSE equals a value of
1. So much for the easy error codes.

Function Return Values

312

The DDERR_GENERIC error code comes next on the list. When you look this error code up in DDraw.H,
you’ll find that it’s equal to E_FAIL. The E_FAIL error result doesn’t have a direct value either. It’s the
output of the _HRESULT_TYPEDEF() macro with an input value of 0x80004005L. When you follow the
_HRESULT_TYPEDEF() macro to the WinError.H file, you’ll find that it’s another typecast to an HRESULT
type. This same wild chase occurs when you want to learn the value of the DDERR_INVALIDPARAMS or
DDERR_OUTOFMEMORY error code.

Some Win32 API function calls rely on a special Visual C++ macro to create an error value. The error value is
composed of a severity level, a special offset, and the actual error number. However, DirectX doesn’t rely on
this macro directly; it follows a circuitous route to achieve the same goal. Let’s begin by looking at the
DDERR_DIRECTDRAWALREADYCREATED error code. If you look at the definition of this error code in
the DDraw.H file, you’ll see that it’s defined as the output of a MAKE_DDHRESULT() macro value of 562.
Here’s the Visual C++ definition of the MAKE_DDHRESULT() macro:

#define _FACDD 0x876
#define MAKE_DDHRESULT(code) MAKE_HRESULT(1, _FACDD, code)

Notice the call to the MAKE_HRESULT(). This is the special Win32 API macro that I mentioned in the
previous paragraph. Notice that it accepts a severity code of 1, a special constant value of _FACDD, and the
actual error code. The MAKE_HRESULT() macro definition looks like this:

#define MAKE_HRESULT(sev,fac,code) \
 ((HRESULT) (((unsigned long)(sev)<<31) |
 ((unsigned long)(fac)<<16) |
 ((unsigned long)(code))))

There are three ways to approach the problem presented by these error codes. You could simply define an
enumeration that contains the output of the macros. Of course, Microsoft could decide to change the way the
macro is calculated, which means that you’d have to make a lot of changes to your code later. You could
create a custom function that combines the effects of the two macros. The problem with this approach is that it
isn’t very flexible and you’ll still need to re−create the MAKE_HRESULT() macro for other Win32 API
function calls. The third approach is the one used in the example. It creates functions the emulate both of the
macros. Listing 14.3 shows the functions we’ll use in this case.

Listing 14.3: Creating DirectX Error Codes

private const int _FACDD = 0x876;

public static Int32 MAKE_DDHRESULT(Int32 code)
{
 // Call the standard Windows API macro with the
 // correct error factors.
 return MAKE_HRESULT(1, _FACDD, code);
}

public static Int32 MAKE_HRESULT(Int32 sev, Int32 fac, Int32 code)
{
 Int64 Temp; // The temporary value of the error code.

 // Define the error code. Bit shift the severity
 // by 31 bits and the factor by 16.
 Temp = sev * 0x80000000;
 Temp += fac * 0x10000;
 Temp += code;

Function Return Values

313

 // return the result.
 return (Int32)Temp;
}

As you can see, the functions match the macros pretty closely. Of course, there isn’t much to the code found
in the MAKE_DDHRESULT() function. All it does is call the MAKE_HRESULT() function to create the
result (or error) value.

The MAKE_HRESULT() function might look a little odd at first. We need to provide a method for
bit−shifting the three error values. Notice that Temp is an Int64 and not an Int32 as you might expect. The C#
compiler won’t allow use of an Int32 value for the type of bit−shifting that we’re performing, so an Int64
value is the only alternative. The three values are shifted as appropriate and combined, just as they are in the
macro. The result value is cast to an Int32 value and passed back to the MAKE_DDHRESULT() function,
which helps create the error values used by the application developer.

Now that you have a better idea of how the managed environment creates the error codes, let’s look at the
error code listing. Listing 14.4 shows the error values and their associated groups.

Listing 14.4: DirectX Error Code Listing

// This is a list of the error codes used with the DirectX
// functions in this library.

// These are the general error codes used with most Windows calls.
public static Int32 DD_OK = 0x00000000;
public static Int32 DD_FALSE = 0x00000001;

// These error codes are based on existing Windows error codes such
// as E_FAIL.
private static UInt32 Temp1 = 0x80004005;
public static Int32 DDERR_GENERIC = (Int32)Temp1;
private static UInt32 Temp2 = 0x8007000E;
public static Int32 DDERR_OUTOFMEMORY = (Int32)Temp2;
private static UInt32 Temp3 = 0x80070057;
public static Int32 DDERR_INVALIDPARAMS = (Int32)Temp3;

// These error codes require a macro to create.
public static Int32 DDERR_INVALIDDIRECTDRAWGUID = MAKE_DDHRESULT(561);
public static Int32 DDERR_DIRECTDRAWALREADYCREATED = MAKE_DDHRESULT(562);
public static Int32 DDERR_NODIRECTDRAWHW = MAKE_DDHRESULT(563);

As you can see, the listing contains some error codes from each of the three groups that we discussed. The
general error codes include DD_OK and DD_FALSE. The DD_OK return code is the only success indicator
in the list. If you don’t receive the DD_OK value, then an error has occurred. The DirectX equivalents of
existing Windows error code groups signify failures such as an out−of−memory condition or invalid
parameters. The DDERR_INVALIDPARAMS error value is the only failure condition that some functions
indicate. Finally, the DirectX−specific error codes indicate some failure that’s specific to DirectX, such as the
lack of any DirectDraw hardware (DDERR_NODIRECTDRAWHW). In general, all DirectX error codes fall
into one of these three groups.

Note the odd manner in which we create the second group of error values. The functions all output Int32 result
values and the remaining error values are all Int32 values. Consequently, these error result values should also

Function Return Values

314

contain Int32 values. The C/C++ header contains the hexadecimal values shown, but C# won’t allow the use
of these values as input to an Int32. The easiest way to fix this problem is to create a temporary value to hold
the UInt32 value and then cast that value it an Int32 as shown. This technique has the advantage of fully
documenting the process and also retaining the original error value.

Creating DirectX Callback Function Prototypes

Like many newer parts of the Win32 API, DirectX relies on callback functions to return information to the
calling application in an asynchronous manner. Using this technique ensures that the application will continue
receiving information rather than get blocked waiting for the information to arrive in one chunk.

As you might imagine, all of these callback functions tell you something about DirectX. In fact, the
DDEnumCallback() and DDEnumCallbackEx() functions are used with the DirectDrawCreate() and
DirectDrawCreateEx() functions to retrieve information about the hardware. We’ll implement all of these
callback functions as delegates, just as we did with the callback functions in Chapter 5. Many of the callback
functions are called from COM interface methods rather than from standalone functions.

Now that you have a better idea of how the callback functions are used by DirectX, let’s discuss them. In the
following sections, I’ll tell you about the callback functions. I’ll also tell you which functions or methods will
use the callback functions so you have a better idea of when to implement them. Look in the section entitled
“Function Return Values” earlier in this chapter for the return values for these functions. You’ll find all of the
code for the listings in this section in the \Chapter 14\DirectXHelper folder of the CD.

DDEnumCallback() and DDEnumCallbackEx()

Both of these callback functions provide information about the DirectX−capable devices on the host system.
The system calls these functions once for each device. The information includes the driver GUID, name, and
description. The input also includes the context information passed to either the DirectDrawEnumerateEx() or
DirectDrawEnumerateEx() function.

Note Because the DirectDrawEnumerate() function is superceded by the DirectDrawEnumerateEx() function,
the DDEnumCallback() function is essentially superceded as well. Even though DirectX still supports
the DDEnumCallback() function, you should use the DDEnumCallbackEx() function in all new code.
The example library contains function declarations for only the DirectDrawEnumerateEx() and the
DDEnumCallbackEx() functions.

The DDEnumCallbackEx() function includes one additional piece of information—the handle to the monitor
associated with the device. This value is null for the primary display device, non−display devices, and any
device that lacks a Desktop connection. The monitor handle helps you discover information about the monitor
so that any application you create can take the capabilities of the monitor into account as well.

EnumModesCallback() and EnumModesCallback2()

Both of these callback functions provide information about the display modes supported by a display device.
The calling syntax for both functions is also the same. They both receive a structure containing surface
description information and an object pointer containing context information. As usual, the context
information is specific to the application and you don’t need to provide it as part of the function call.

Creating DirectX Callback Function Prototypes

315

Note The EnumModesCallback2() function supercedes the EnumModesCallback()
function. Even though DirectX still supports the EnumModesCallback()
function, you should use the newer EnumModesCallback2() function and the
associated IDirectDraw7.EnumDisplayModes() method for application
development.

The main difference between the two functions is that the EnumModesCallback2() function accepts a
DDSURFACEDESC2 data structure as input. This data structure contains substantially more information than
the DDSURFACEDESC data structure used by the EnumModesCallback() function. The additional
information includes additional color references and texture information.

EnumSurfacesCallback(), EnumSurfacesCallback2(), and
EnumSurfacesCallback7()

All three of these functions perform the same task—they enumerate the surfaces currently in use for a specific
purpose on a display. Several methods call these functions, including the
IDirectDrawSurface7.EnumAttachedSurfaces() and IDirectDrawSurface7.EnumOverlayZOrders() methods.
All three callback functions are still supported, but you should use the correct call for the version of DirectX
installed on the host system. In general, try to use the DirectX 7 calls when possible. Note that the example
code contains support for only the EnumSurfacesCallback2() and EnumSurfacesCallback7() functions.

The callback functions accept three inputs. The first is the address of an IDirectDrawSurface object. The
nature of this object depends on the calling function and the version of DirectX in use at the time. The best
capabilities come from a IDirectDrawSurface7 object (with IDirectDrawSurface and IDirectDrawSurface4
objects as the alternatives). Make sure you use only method calls supported by the calling interface.

The second argument is a DDSURFACEDESC or DDSURFACEDESC2 data structure. The two structures
differ by the amount of surface description information they provide (as mentioned earlier). Both the
EnumSurfacesCallback2() and EnumSurfacesCallback7() functions provide access to a DDSURFACEDESC2
data structure.

Finally, the third argument provides context information. This information is application specific, as usual.

EnumVideoCallback()

This callback function enumerates the video port capabilities of the selected display device. The
IDDVideoPortContainer.EnumVideoPorts() method calls this function. The EnumVideoCallback() function
receives a DDVIDEOPORTCAPS data structure as input. It also receives the usual context information.

The DDVIDEOPORTCAPS data structure contains a wealth of information about the video port. Not all of
the information is valid for every video port, so you need to check the status of the dwFlags field. Most video
ports tell how large a display they accommodate and their port identification number. Ports also provide a
series of flags that describe their capabilities, such as support for interlaced video.

Delegate Declarations

The previous sections discussed how you’d use the various callback functions in an application. It’s time to
look at the callback function declarations. Listing 14.5 shows the code we’ll use in this portion of the
example. Note that the documentation for each function has been removed—you can see the full
documentation in the \Chapter 14\DirectXHelper folder on the CD.

EnumSurfacesCallback(), EnumSurfacesCallback2(), and EnumSurfacesCallback7()

316

Listing 14.5: Callback Function Delegate Declarations

public delegate Boolean DDEnumCallbackEx(IntPtr lpGUID,
 String lpDriverDescription,
 String lpDriverName,
 IntPtr lpContext,
 HMONITOR hm);

public delegate Int32 EnumModesCallback2(
 DDSURFACEDESC2 lpDDSurfaceDesc,
 IntPtr lpContext);

public delegate Int32 EnumSurfacesCallback2(
 Object lpDDSurface,
 DDSURFACEDESC2 lpDDSurfaceDesc,
 IntPtr lpContext);

public delegate Int32 EnumSurfacesCallback7(Object lpDDSurface,
 DDSURFACEDESC2 lpDDSurfaceDesc,
 IntPtr lpContext);

public delegate Int32 EnumVideoCallback(
 DDVIDEOPORTCAPS lpDDVideoPortCaps,
 IntPtr lpContext);

As you can see, there aren’t any surprises in the delegate declarations. We’re using the same techniques as
before. The only argument you might want to change in each case is lpContext. The example uses an IntPtr in
the interest of maximum flexibility. You could also use an Int32 value or an Object if necessary.

Working with the DirectX Interfaces and Classes

As previously mentioned, DirectX relies heavily on COM to manipulate data and present it on an output
device. Surprisingly, there aren’t many DirectDraw−specific interfaces to learn about. The DirectX interfaces
are targeted but contain quite a few methods. The following list won’t provide you with an in−depth review of
each interface, but it will provide you with enough information to begin using the interfaces to perform useful
work. We’ll also look at the interfaces in more detail in the example applications found in this chapter:

IDDVideoPortContainer This interface contains methods that help you work with video ports. There are
methods that open, close, and enumerate the ports, as well as determine their current status. The main use of
this interface is gathering information about the DirectX environment.

IDirectDraw7 This is the main DirectDraw interface. You’ll use it to create many of the other objects
described in this section. It also has methods for information gathering (such as determining the number of
display modes supported by the active device) and enumerating devices. You’ll always create this interface
before any other DirectDraw interface when creating a pure COM application.

IDirectDrawClipper This interface helps you manage clip lists. A clipper controls the blitting of image data
to a specific portion of a surface. Conversely, you can use it to crop an image that you want to blit to a
surface. A clip list is a collection of clippers.

Working with the DirectX Interfaces and Classes

317

IDirectDrawColorControl This interface controls the getting and setting of color objects in the DirectDraw
environment. You’ll use it whenever you want to change the color of all or part of a surface or drawing
element.

IDirectDrawGammaControl This interface enables you to adjust the red, green, and blue ramp values used
on the primary surface in a DirectDraw application. The ramp values adjust the overall contrast and brightness
of the image. Think of the ramp values as similar to a filter used on the front of a camera lens or the contrast
and brightness controls on a television set.

IDirectDrawPalette This interface controls the content and use of the DirectDraw palette. Just as an artist’s
palette contains only certain colors, DirectDraw limits your use of color to those found in the palette. In most
cases, the default palette works fine. However, some images require special rendering, and therefore a special
palette.

IDirectDrawSurface7 This is one of the essential interfaces for DirectDraw. You must create a surface on
which to draw before you attempt to draw anything. DirectDraw supports (and often requires) the use of
multiple surfaces. Each surface is a separate part of the drawing. Every application requires a primary surface
as a minimum.

IDirectDrawVideoPort This interface controls the actual interaction between DirectDraw and a display
device. It includes methods for changing the color controls, modifying the synchronization settings, and
performing other tasks related to display devices. As with many of the other interfaces, you can also use this
interface to determine the status of selected software settings and devices.

Learning the DirectX Capabilities of the Host Machine Example

Sometimes you need to know how many display devices the host machine has available for drawing. In
addition, you need to know the GUIDs of any ancillary devices so that you can access them as needed. The
DirectDrawEnumerateEx() function we created for the DirectXHelper library works perfectly for this purpose.
The callback continues to receive input until DirectX has listed all of the devices.

Of course, this isn’t the only method for checking out a host system. DirectX also comes with the DirectX
Caps Viewer tool. This tool helps you learn more about a host system. Unfortunately, this second method
works only if you have direct access the system, which _is something that many developers won’t have when
creating applications.

No matter which method you use to learn about the host computer, you’ll need to perform this task relatively
often as you create DirectX applications. The following sections tell you more about the
DirectDrawEnumerateEx() function and the DirectX Caps Viewer tool methods of learning the capabilities of
a host system.

Using the DirectDrawEnumerateEx() Function

The DirectDrawEnumerateEx() function provides a programmatic method of determining the number and
type of DirectX−compatible display devices on a given system. The advantage of using this function is that
you can call it without creating any objects or performing any other tasks. The call is a straightforward use of
standard Win32 API callback functionality. With this in mind, let’s look at the example code found in Listing
14.6. You can find the source code for this example in the \Chapter 14\C#\DirectXCaps and \Chapter
14\VB\DirectXCaps folders of the CD.

Learning the DirectX Capabilities of the Host Machine Example

318

Listing 14.6: Enumerating Devices Using Code

private void btnTest_Click(object sender, System.EventArgs e)
{
 Int32 Result; // The result of a call.

 // Create the callback function pointer.
 Callbacks.DDEnumCallbackEx DDCB =
 new Callbacks.DDEnumCallbackEx(DDCallback);

 // Clear the display area.
 txtDevices.Clear();

 // Call the function. This call will enumerate all of the devices.
 Result = Functions.DirectDrawEnumerateEx(
 DDCB,
 IntPtr.Zero,
 DDEnumType.DDENUM_ALL_DEVICES);

 // Check for errors.
 if (Result != Functions.DD_OK)
 MessageBox.Show("The following DirectX error occured: " +
 Result.ToString("X"),
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
}

public Boolean DDCallback(IntPtr lpGUID,
 String lpDriverDescription,
 String lpDriverName,
 IntPtr lpContext,
 HMONITOR hm)
{
 // Create a StringBuilder to hold the data.
 // Initialize it with the current display text.
 StringBuilder SB = new StringBuilder(txtDevices.Text);

 // Display the string data on screen.
 SB.Append(lpDriverName + "\r\n");
 SB.Append(lpDriverDescription + "\r\n");

 // Display the GUID on screen.
 if (lpGUID != IntPtr.Zero)
 {
 GUID DisplayGUID = new GUID();
 Marshal.PtrToStructure(lpGUID, DisplayGUID);
 SB.Append("Driver GUID: ");
 SB.Append(DisplayGUID.Data1.ToString() + "−");
 SB.Append(DisplayGUID.Data2.ToString() + "−");
 SB.Append(DisplayGUID.Data3.ToString() + "−");

 for (int Counter = 0;
 Counter < DisplayGUID.Data4.Length;
 Counter++)
 {
 SB.Append(DisplayGUID.Data4[Counter].ToString());
 }

 SB.Append("\r\n");
 }

Learning the DirectX Capabilities of the Host Machine Example

319

 // Display the information on screen.
 SB.Append("\r\n");
 txtDevices.Text = SB.ToString();

 // Continue the enumeration.
 return true;
}

Because the DirectXHelper library contains all of the declarations needed to use this function, we don’t have
to add anything special to the application. Execution begins with a call to the btnTest_Click() method. The
code creates a new DDEnumCallbackEx() delegate and assigns the DDCallback() method to it. This is the
callback function pointer we’ll pass to the DirectDrawEnumerateEx() function. Remember that the
DirectDrawEnumerateEx() function also accepts a pointer to a context object and requires that you tell it
which devices to enumerate. The btnTest_Click() method should end with a call to the
DirectDrawEnumerateEx() function.

Notice that, unlike the callback function examples in Chapter 5, this example checks the Result value on
return from the DirectDrawEnumerateEx() function call. You can always rely on Windows to support a call
that enumerates windows using a standard Win32 API call. However, there’s no guarantee that the client
machine will provide the required support for DirectX. The developer must include code that checks the
Result value to ensure that the machine provides the required support. If it doesn’t, then the developer needs to
provide code to exit the application with a suitable error code. This bit of code shows a second use for the
DirectDrawEnumerateEx() function—validating a specific level of DirectX support. If this function fails, you
know that the host machine lacks support for DirectX 6 or above.

The DirectDrawEnumerateEx() function will call the callback function DDCallback() for each DirectX
compatible display device on the host system. Every device will return a driver name and description.
However, the primary display adapter typically won’t return a GUID or the handle of a display. Microsoft
assumes that you already know this information and won’t need additional input. Consequently, the
DDCallback() function always checks the lpGUID entry to ensure that it actually contains data. In all other
ways, the DDCallback() function is relatively simple and displays the data on screen. Figure 14.1 shows
typical output from the example application.

Figure 14.1: The example application enumerates the DirectX−compatible display devices on the host system.

Using the DirectX Caps Viewer Tool

The DirectX Caps Viewer tool is one of the first utilities you should learn how to use after installing the
DirectX SDK on your system. The data provided by this utility can save considerable time in locating

Using the DirectX Caps Viewer Tool

320

hardware− and driver−related problems on your system. In fact, this is a tool that every administrator should
learn how to use as well. The following sections discuss how you can use the DirectX Caps Viewer tool to
improve the DirectX development experience.

An Overview of the DirectX Caps Viewer Tool

Before you can use this tool, you must install the DirectX SDK. You’ll find the DirectX Caps Viewer tool in
the \Start Menu\Programs\Microsoft DirectX 8.1 SDK\DirectX Utilities folder. The initial DirectX Caps
Viewer tool display appears in Figure 14.2.

Notice that the DirectX Caps Viewer tool makes a distinction between devices and DirectX objects. There are
separate entries for the display adapters on my system and the DirectDraw devices. The distinction is that the
presence of a display adapter alone doesn’t guarantee DirectDraw compatibility. Even if the display adapter
would normally have all of the required hardware support for DirectX, the hardware still requires the proper
driver. The important element for the DirectX developer is learning where to look for specific information
about the host system. Generally, you’ll want to use the DirectX−specific entries to learn what your
application can actually do on the host system rather than what the hardware is capable of doing with the
proper driver.

Figure 14.2: The DirectX Caps Viewer tool helps you learn about the DirectX capabilities of your system.

Microsoft has improved DirectX capabilities over the years, mainly due to the input of game developers. The
initial release of DirectX included visual elements and a few aural elements. The latest version of DirectX
concentrates on four main areas of the multimedia experience:

Visual•
Audio•
Data input•
Connectivity•

The focus I chose for this book is the visual component of DirectX. This element shows up the best in books
and it’s what many business users will concentrate on learning first. However, it’s important to consider the
other DirectX components as well, because they do have an impact on the multimedia experience.

Using the DirectX Caps Viewer Tool

321

Converting the DirectX Caps Viewer Tool to a Data Structure

For DirectX application developers, there’s a practical aspect in using this utility—it can provide validation of
programming design decisions. You’ll remember from Chapter 13 that DirectX relies on a wealth of data
structures to communicate with the client application. Figure 14.3 shows a typical example of the output of
one of these data structures.

Figure 14.3: Use the DirectX Caps Viewer tool to learn more about the content of various DirectX data
structures.

For a comparison of the data shown in Figure 14.3 to a data structure, check the DDCAPS data structure
explanation found at
ms−help://MS.VSCC/MS.MSDNVS/dx8_vb/directx_vb/extras/DirectDraw7/vbddref_89cy.htm. (We also
discussed this structure in the section entitled "Converting the DDCAPS Data Structure" in Chapter 13.)
You’ll find that the display in Figure 14.3 compares favorably to the DDCAPS data structure description. If
you were developing an application that required information stored in this data structure, you could use the
DirectX Caps Viewer tool to validate the results received by your application.

An Overview of the Sound Elements

Figure 14.4 shows the sound elements associated with DirectX. As you can see, the DirectX sound elements
are divided into three areas: hardware, sound effects, and music. The element highlighted in Figure 14.4 is the
hardware. Most machines will have several hardware sources that DirectSound will target, including the
sound capability of the modem. However, notice in Figure 14.4 that the two modem entries include the term
emulated in their description. This means that the modem doesn’t provide any DirectSound−compatible
hardware. DirectSound recognizes it as a valid device but will emulate the required functionality in software.

Using the DirectX Caps Viewer Tool

322

Figure 14.4: The DirectX Sound elements include hardware, sound effects, and music.

Moving on to the DirectSoundCapture Devices folder, you’ll find the hardware that you saw in DirectSound
Devices folder. The entries in the DirectSoundCapture Devices folder focus on sound effects. These entries
describe the capabilities of the individual devices to record and play wave audio. The items of interest for
developers in this situation are the entries in the General Caps folder for each device. This folder contains a
list of the wave formats that each device can play and also tells you which formats you can use within your
application.

Most systems contain a multitude of DirectMusic port entries. However, you’ll usually find only one or
perhaps two entries that rely on actual hardware. The remaining entries will reference emulated hardware. The
most common emulated port is the Microsoft MIDI Mapper. The Caps folder for each device will tell you the
type of device (input or output) and provide statistics such as the number of voices that the device supports.

An Overview of the Data Input Elements

The number and type of DirectInput devices that a system possesses varies based on the use of the system.
Business systems normally contain the two DirectInput devices shown in Figure 14.5. In fact, the mouse and
the keyboard the two devices you can count on for any system. If you want to create an application with
general appeal, then target these two devices.

Figure 14.5: Every Windows system will contain a mouse and a keyboard.

The information found in the device folder depends on the device. As shown in Figure 14.5, the mouse folder
contains information such as the number of buttons. In general, you can expect every device to provide type
information. The type information tells you about the generic capabilities of the device.

Home and gaming systems will likely contain a number of additional devices such as joysticks. The
information that DirectInput provides is a little sketchy in this area due, in part, to a lack of standardization.
Although it’s possible to categorize a joystick by the number of buttons it provides, it’s difficult to provide

Using the DirectX Caps Viewer Tool

323

standardized information about its programmability. This means the developer is still partially responsible for
finding details about some input devices using direct hardware access.

An Overview of the Connectivity Elements

The term DirectPlay is somewhat misleading because you could use this feature for a number of
purposes—many of which aren’t related to playing games. Microsoft originally designed the feature for
games, though, so the name stuck. The DirectPlay feature tracks DirectX connectivity, as shown in Figure
14.6.

Figure 14.6: Connectivity is a requirement for many multimedia applications today.

As you can see, most systems will include support for a number of DirectPlay devices, including modem,
serial port, network, and Internet. The Connections folder contains a list of these devices and each device
folder will tell you about the sessions for that device. There’s little in the way of capability information
provided by DirectPlay because it’s impossible to obtain that information until it establishes a connection.

A Simple 2D DirectDraw Example

As previously mentioned, there are two ways to access DirectX in the managed environment. You can use
either the function call approach (as we did in the previous example) or the pure COM approach. This section
shows how to work with DirectX using the pure COM approach. The example will demonstrate a simple 2D
drawing. Of course, before we can use the COM approach, we’ll need to import the DirectX COM object. The
following sections show everything needed to create this example. You’ll find the source code for this
example in the \Chapter 14\C#\2DDraw and \Chapter 14\VB\2DDraw folders on the CD.

Importing the DirectX COM Library

One of the first steps you’ll need to perform for any application that uses the COM method of accessing
DirectX is to import the DirectX library into the application. The .NET environment will perform all of the
work necessary to create a bridge between the managed environment and the COM library. If you’ve already
worked with COM libraries in the past, you can import the library and skip the remainder of this section.

Note It might be tempting to think that the DirectX COM library is complete. It’s true that the
library does provide access to all of the interfaces you need and most of the data structures.
However, there are two sets of elements that are still missing. The first, and most important,
are the function declarations you’ll need to perform tasks such as enumerate the hardware on a
host system. The second is the enumerated values used to detect error conditions. For this
reason, you’ll still want to include the DirectXHelper library (or an equivalent without the
data structures) in your application.

Using the DirectX Caps Viewer Tool

324

It’s important to remember that DirectX is unmanaged code. This means that some of the functionality you’re
used to seeing in the unmanaged environment may take on a different look in a .NET application. It also
means that some COM libraries import better than others do. The DirectX library is one that imports with
enough functionality that you can actually perform work with it. Unfortunately, other libraries aren’t quite as
useful when you import them (usually because they broke some of the rules for creating COM libraries), so
you end up doing more work. The following steps show how to import the library:

Create a new project.1.
Right−click the References folder in Solution Explorer and choose Add Reference from the context
menu. You’ll see an Add Reference dialog box.

2.

Select the COM tab and locate the DirectX 7 for Visual Basic Type Library entry shown in Figure
14.7.

Figure 14.7: Choose the DirectX 7 for Visual Basic Type Library for this _example.

3.

Click Select to place the library in the Selected Components list.4.
Click OK. Visual Studio will add the reference to the References folder in Solution Explorer.5.

Notice that the name doesn’t match the entry in the Add Reference dialog box—it’s listed as DxVBLib. This
is the name you’ll use to reference the library in your code. You’ll also find the library listed as
interop.dxvblib in the Object Browser. That’s because we’re using the interoperability functionality provided
by Visual Studio .NET to access the COM library.

Writing the Code

This is an extremely simple 2D drawing example. All it does it read a file from disk and place it on screen.
However, when running it, you’ll notice some significant differences from performing the same task using
native managed applications. Using DirectX begins by initializing the environment. Listing 14.7 shows how
to perform this task.

Listing 14.7: Initializing DirectX in the Managed Environment

// These contants control the application configuration.
private const int SCREENWIDTH = 800;
private const int SCREENHEIGHT = 600;
private const int BITCOUNT = 32;
private const int BITMAPWIDTH = 100;
private const int BITMAPHEIGHT = 100;

Writing the Code

325

private const String BITMAPPATH = "C:\\Colorblk2.bmp";

// These variables are used application wide.
private DirectX7 DX7; // DirectX 7 Object
private DirectDraw7 DD7; // DirectDraw 7 Object
private DirectDrawSurface7 PSurf; // Primary surface
private DirectDrawSurface7 SSurf; // Secondary surface

public frmMain()
{
 DDSURFACEDESC2 SurfDesc; // Surface description.

 // Required for Windows Form Designer support
 InitializeComponent();

 // Initialize the DirectX environment.
 DX7 = new DirectX7Class();
 DD7 = DX7.DirectDrawCreate("");

 // Configure DirectDraw for use.
 DD7.SetCooperativeLevel(this.Handle.ToInt32(),
 CONST_DDSCLFLAGS.DDSCL_FULLSCREEN |
 CONST_DDSCLFLAGS.DDSCL_EXCLUSIVE);

 DD7.SetDisplayMode(SCREENWIDTH,
 SCREENHEIGHT,
 BITCOUNT,
 0,
 CONST_DDSDMFLAGS.DDSDM_DEFAULT);

 // Create the primary surface.
 SurfDesc = new DDSURFACEDESC2();
 SurfDesc.lFlags = CONST_DDSURFACEDESCFLAGS.DDSD_CAPS;
 SurfDesc.ddsCaps.lCaps =
 CONST_DDSURFACECAPSFLAGS.DDSCAPS_PRIMARYSURFACE;
 PSurf = DD7.CreateSurface(ref SurfDesc);

 // Create the secondary surface.
 SurfDesc = new DDSURFACEDESC2();
 SurfDesc.lFlags = CONST_DDSURFACEDESCFLAGS.DDSD_CAPS |
 CONST_DDSURFACEDESCFLAGS.DDSD_HEIGHT |
 CONST_DDSURFACEDESCFLAGS.DDSD_WIDTH;
 SurfDesc.ddsCaps.lCaps =
 CONST_DDSURFACECAPSFLAGS.DDSCAPS_OFFSCREENPLAIN;
 SurfDesc.lHeight = BITMAPHEIGHT;
 SurfDesc.lWidth = BITMAPWIDTH;
 SSurf = DD7.CreateSurfaceFromFile(BITMAPPATH, ref SurfDesc);

 // We’re ready to begin drawing.
 StartDrawingLoop();
}

The beginning of the listing contains constants you can change to meet the needs of your system. Make sure
you change the location of the graphics file to match the image on your system. The \Chapter 14\Graphics
folder contains the image shown later in the example. You’ll also see four class−level objects: the object used
to access DirectX, the DirectDraw object contained within DirectX, and the two surface objects used for
drawing on screen.

Writing the Code

326

The class constructor begins by initializing the application components as it normally does. Don’t attempt to
use DirectX until this process completes. Otherwise, your system may act abnormally.

Once the application configuration is complete, the code creates the DirectX object and then uses the
DirectDrawCreate() method to create the DirectDraw object. The single argument for this method accepts a
GUID. Because the application uses the active driver, there’s no need to supply a GUID. Before the
application can use the DirectDraw object, the code must configure it for use. Configuring the DirectDraw
object means defining the display mode and cooperation level as a minimum, but you’ll normally make other
configuration changes as well.

DirectDraw applications rely on surfaces to present information. This application requires two surfaces. The
first surface defines the client drawing area, while the second surface contains the image we want to display in
the client drawing area. Most developers refer to this secondary image as the off screen image because you
use it off screen until it’s ready to present on screen. The next step the code takes is to configure these two
drawing surfaces. In both cases, the code creates a surface description using a DDSURFACEDESC2 data
structure and then calls a constructor function. The primary surface uses the CreateSurface() method, while
the secondary surface uses the CreateSurfaceFromFile() method.

The final step is to call the StartDrawingLoop() method. The application is set up and ready to use. In fact, the
display adapter has already changed modes and is ready to present any information the application creates.
Listing 14.8 shows the code used to display an image on screen.

Listing 14.8: Displaying an Image On Screen

private void StartDrawingLoop()
{
 RECT BMRect; // Bitmap size.
 RECT DrawRect; // Drawing area size.
 Int32 DrawTop; // Top of the drawing area.
 Int32 DrawLeft; // Left side of the drawing area.

 // Result code from call.
 Int32 Result = (Int32)CONST_DDRAWERR.DD_OK;

 while (Result == (Int32)CONST_DDRAWERR.DD_OK)
 {
 // Check for application events.
 Application.DoEvents();

 // Verify that DD7 is still valid.
 if (DD7 == null)
 break;

 // Make sure the application can display
 // the data.
 Result = DD7.TestCooperativeLevel();

 // If we can draw, begin displaying data.
 if (Result == (Int32)CONST_DDRAWERR.DD_OK)
 {
 // Create the bitmap sizing rectangle.
 BMRect.Top = 0;
 BMRect.Left = 0;
 BMRect.Right = BITMAPWIDTH;
 BMRect.Bottom = BITMAPHEIGHT;

Writing the Code

327

 // Create the drawing area rectangle.
 DrawTop = frmMain.ActiveForm.Height −
 frmMain.ActiveForm.ClientRectangle.Height;
 DrawLeft = frmMain.ActiveForm.Width −
 frmMain.ActiveForm.ClientRectangle.Width;
 DrawRect.Top = DrawTop;
 DrawRect.Left = DrawLeft;
 DrawRect.Right = frmMain.ActiveForm.ClientRectangle.Right;
 DrawRect.Bottom = frmMain.ActiveForm.ClientRectangle.Bottom;

 // Display the drawing.
 Result = PSurf.Blt(ref DrawRect,
 SSurf,
 ref BMRect,
 CONST_DDBLTFLAGS.DDBLT_ASYNC);

 // Verify there were no errors. If so, recover.
 if (Result == (Int32)CONST_DDRAWERR.DDERR_SURFACELOST)
 {
 DD7.RestoreAllSurfaces();
 SSurf = null;
 CreateOffscreenSurfaces();
 }
 }
 }
}

private void CreateOffscreenSurfaces()
{
 DDSURFACEDESC2 SurfDesc; // Surface description.

 SurfDesc = new DDSURFACEDESC2();
 SurfDesc.lFlags = CONST_DDSURFACEDESCFLAGS.DDSD_CAPS |
 CONST_DDSURFACEDESCFLAGS.DDSD_HEIGHT |
 CONST_DDSURFACEDESCFLAGS.DDSD_WIDTH;
 SurfDesc.ddsCaps.lCaps =
 CONST_DDSURFACECAPSFLAGS.DDSCAPS_OFFSCREENPLAIN;
 SurfDesc.lHeight = BITMAPHEIGHT;
 SurfDesc.lWidth = BITMAPWIDTH;
 SSurf = DD7.CreateSurfaceFromFile(BITMAPPATH, ref SurfDesc);
}

The StartDrawingLoop() method begins by setting up a loop that will constantly refresh the image. Of course,
setting up such as loop normally means that the application ignores all input. That’s why the application
includes a call to the Application.DoEvents() method. Using this method ensures that the application
continues to respond to events.

There’s a situation where the application could end in an odd part of the loop and cause a reference problem.
The next step is to ensure that the DirectDraw object is still usable. If the code detects a condition where the
object is no longer useable, it breaks out of the loop. In addition to checking the validity of the DirectDraw
object, you must also verify that it can draw on screen. The TestCooperativeLevel() method performs this
task.

Once the code determines that the DirectDraw object is valid and that it can draw on screen, it’s time to
prepare the drawing surface. The BMRect and DrawRect data structures contain the drawing coordinates for
the application. Notice that both structures rely on the coordinate information supplied by the application for
input. It’s important to use the application data to ensure that you don’t draw off the edge of the screen.

Writing the Code

328

The Blt() method actually transfers the data from off screen to on screen. Notice that the code uses the two
RECT structures and the secondary surface to accomplish this task. The application draws the image
asynchronously. The final bit code ensures that the application doesn’t lose the bitmap surface data and that
the image on screen remains uncorrupted. If the bitmap surface data does become corrupted, the
CreateOffscreenSurfaces() method performs the same initialization found in the class constructor.

The code must perform one additional task. When the user exits the application, the DirectX and DirectDraw
objects still exist. These objects aren’t under the purview of the Garbage Collector, so the application must
release them manually. Listing 14.9 shows the code used for this purpose.

Listing 14.9: Cleaning Up on Application Exit

private void frmMain_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 // Clean up the objects and DirectDraw setup.
 DD7.SetCooperativeLevel(this.Handle.ToInt32(),
 CONST_DDSCLFLAGS.DDSCL_NORMAL);
 DD7.RestoreDisplayMode();
 DD7 = null;
 DX7 = null;
}

As you can see, the code needs to restore the display settings before the application exits using the
SetCooperativeLevel() and RestoreDisplayMode() methods. Windows can also take care of this task, but there
are situations when the display could become corrupted. It’s better to handle this task as part of the exit code.
Once the display is restored, setting the two objects to null (Nothing in Visual Basic) will free the memory.
Figure 14.8 shows the output from this application.

Figure 14.8: The sample application paints an image on screen within the client area.

Using the GIF Construction Set

There are many different ways to add animated effects to applications. Some developers are under the
impression that they must use DirectX or a technology like it to create good animation. The fact is that most
business applications don’t require animation and those that do can often present an acceptable appearance by

Using the GIF Construction Set

329

using an animated GIF file. DirectX is a powerful technology that you can use to create everything from a
simple business presentation to an advanced game; however, all of that power comes at a price—a fact that
the example in this chapter demonstrated.

All that an animated GIF does is pack several pictures into one file. A browser plays these pictures back one
at a time, which helps you to create the illusion of continuous animation. Because you can place a browser
viewing area within standard .NET desktop applications, animation is freely available to anyone who wants it.
You can also use special effects to create a slide show using a GIF by changing the interval between pictures.

Note This section will show you how to create a GIF using the GIF Construction Set from Alchemy Mind
Works. You can download it from several places. The best place is straight from the vendor at
http://www.mindworkshop.com/alchemy/gifcon.html. This application also appears on the CD in the
\GIF Construction Set folder.

We’ll use the GIF Construction Set in this example for two reasons. First, since it’s shareware, all of you can
download it from the Internet and follow along with the examples. Second, it’s a great program, and most
people find that it works just fine for creating animated GIFs. At most, you’ll notice the lack of an actual
drawing program with this program, but Windows already supplies that in the form of Paintbrush or MS Paint.

You’ll also need a graphics conversion utility if your drawing program doesn’t support the GIF file format
directly (neither Paintbrush nor MS Paint does). Both Graphics Workshop from Alchemy Mind Works
(located in the \Graphics Workshop folder of the CD) and Paint Shop Pro by Jasc Software are excellent
graphics conversion programs. Both vendors provide shareware versions of their product. You can find
Alchemy Mind Works at the Internet site provided in the previous note. The JASC product appears at
http://www.jasc.com/.

Start the GIF Construction Set program. Use the File Ø Open command to view the contents of the \Chapter
14\Animated Graphic folder of the CD. Notice that the directory has several GIF files in it already. Time0.GIF
is a base file—a blank used to create the animation effect. You can save a substantial amount of time by
creating such a blank whenever you create an animation. In fact, cartoonists use this very technique. They
draw the common elements of an animation once on separate sheets and then combine them to create the
animation. Only unique items are drawn one at a time. Time1.GIF through Time12.GIF are the actual
animation files—think of each one as an animation cel.

Let’s create an animated GIF using these “cel” files. The following procedure isn’t meant to lock you into a
particular regimen, but it does show one way to use the GIF Construction Set to create one:

Use the File Ø New command to create a new GIF. You’ll see a blank GIF dialog. GIF Construction
Set always assumes a standard background color of black. We’ll need to change that value.

Note Users familiar with older versions of the GIF Construction Set will be happy to hear that it
automatically adjusts the size of the image now to match the figures in the GIF. Developers
adjusted this value manually in the past with less than useable results in some cases.

1.

Double−click the Header entry. You’ll see the Edit Header dialog shown Figure 14.9. It helps you to
change characteristics associated with the GIF—for example, the background color. Notice the Loop
option on this dialog. If you keep this value set to 0, the GIF will continue looping indefinitely. This
is a great idea, in most cases, but you might want to set this value to something else to save system
resources when needed.

2.

Using the GIF Construction Set

330

Figure 14.9: Use the Edit Header dialog box to change the overall characteristics of the GIF.
Set any header options. The example sets the number of loops to 10 for testing purposes, but you can
set this value as you see fit. The example also sets the background color to white (color number 215).
Click OK to make the change permanent.

3.

Click the + button and select Image from the drop−down list (or use the Block Ø Merge command).
This command helps you to add an image to the GIF. You’ll see a standard File Ø Open dialog.

4.

Double−click the first file you want to use in the animation. In this case, you’d double−click
Time1.GIF. You’ll see the Palette dialog shown in Figure 14.10. The palette for this graphic doesn’t
match the standard palette used by GIF Construction Set. Note that older versions of the GIF
Construction set provided more options.

Figure 14.10: Use the Palette dialog to modify the method used to handle color in imported graphics.

5.

Select the Dither This Image to the Global Palette setting for compatibility reasons. Click OK to
complete the process. GIF Construction Set will insert a new graphic into the GIF.

6.

Click the + button and select Image from the drop−down list. You’ll see the same File Ø Open dialog
as before.

7.

Select the next image in the series and click OK. Click OK again if GIF Construction Set asks you
about the palette setting. GIF Construction Set will automatically insert the image in the next position
of the animation sequence.

8.

Repeat steps 7 and 8 for the remaining GIFs in this animation (Time2.GIF, Time3.GIF, and so on).
Now we have to insert some controls to make this image work properly.

9.

Double−click Block 3 (the second image). You’ll see an Edit Image dialog like the one shown in
Figure 14.11. Notice that this dialog tells you about the image. You can also use this dialog to add
control blocks between image elements. Control blocks allow you to modify the behavior of the
animated GIF. For example, you can use a control block to set the time between pictures. Many
browsers expect a control block between every image in your animated GIF, so you must add a
control block starting with the second image.

10.

Using the GIF Construction Set

331

Figure 14.11: Use the Edit Image dialog box to change the characteristics of an individual cel.
Check the Control Block option. Set the Delay field to 1. Click OK to add the control block. You
won’t see any difference in the main window.

11.

Click the next Image entry.12.
Repeat steps 11 and 12 for each of the images. You’ll end up with a series of images, as shown in
Figure 14.12. (Make sure you add a Control object to the last image, since the animated GIF will
automatically loop back to the first image.)

Figure 14.12: The end result is a series of images with control settings.

13.

To view the completed animation, click the View button. Press Esc to exit the viewing area.14.
The only thing left to do is save your animated GIF file. Use the File Ø Save As command to do that.
You could use any filename, but for the purposes of this example, save the file as AnimatedTime.GIF.

15.

Now you have an animated image that you could display using a number of techniques, including using a
browser window. Interestingly enough, the animated GIF is simply a series of images—nothing more. So you
can also use it as an image list within a DirectX application by clipping offsets within the image. The number
of ways to use the stacked image technique found in animated GIFs are nearly unlimited.

Tip You can find a demonstration of how to use an animated GIF within a desktop application in
the \Extras\AniDisplay folder of the CD. The example folder contains complete source code
and documentation, plus a test file you can use with the example. You can also use this
example to test other animated GIFs downloaded from sources such as the Internet.

Using the GIF Construction Set

332

Using the GIF Construction Set

There are many different ways to add animated effects to applications. Some developers are under the
impression that they must use DirectX or a technology like it to create good animation. The fact is that most
business applications don’t require animation and those that do can often present an acceptable appearance by
using an animated GIF file. DirectX is a powerful technology that you can use to create everything from a
simple business presentation to an advanced game; however, all of that power comes at a price—a fact that
the example in this chapter demonstrated.

All that an animated GIF does is pack several pictures into one file. A browser plays these pictures back one
at a time, which helps you to create the illusion of continuous animation. Because you can place a browser
viewing area within standard .NET desktop applications, animation is freely available to anyone who wants it.
You can also use special effects to create a slide show using a GIF by changing the interval between pictures.

Note This section will show you how to create a GIF using the GIF Construction Set from Alchemy Mind
Works. You can download it from several places. The best place is straight from the vendor at
http://www.mindworkshop.com/alchemy/gifcon.html. This application also appears on the CD in the
\GIF Construction Set folder.

We’ll use the GIF Construction Set in this example for two reasons. First, since it’s shareware, all of you can
download it from the Internet and follow along with the examples. Second, it’s a great program, and most
people find that it works just fine for creating animated GIFs. At most, you’ll notice the lack of an actual
drawing program with this program, but Windows already supplies that in the form of Paintbrush or MS Paint.

You’ll also need a graphics conversion utility if your drawing program doesn’t support the GIF file format
directly (neither Paintbrush nor MS Paint does). Both Graphics Workshop from Alchemy Mind Works
(located in the \Graphics Workshop folder of the CD) and Paint Shop Pro by Jasc Software are excellent
graphics conversion programs. Both vendors provide shareware versions of their product. You can find
Alchemy Mind Works at the Internet site provided in the previous note. The JASC product appears at
http://www.jasc.com/.

Start the GIF Construction Set program. Use the File Ø Open command to view the contents of the \Chapter
14\Animated Graphic folder of the CD. Notice that the directory has several GIF files in it already. Time0.GIF
is a base file—a blank used to create the animation effect. You can save a substantial amount of time by
creating such a blank whenever you create an animation. In fact, cartoonists use this very technique. They
draw the common elements of an animation once on separate sheets and then combine them to create the
animation. Only unique items are drawn one at a time. Time1.GIF through Time12.GIF are the actual
animation files—think of each one as an animation cel.

Let’s create an animated GIF using these “cel” files. The following procedure isn’t meant to lock you into a
particular regimen, but it does show one way to use the GIF Construction Set to create one:

Use the File Ø New command to create a new GIF. You’ll see a blank GIF dialog. GIF Construction
Set always assumes a standard background color of black. We’ll need to change that value.

Note Users familiar with older versions of the GIF Construction Set will be happy to hear that it
automatically adjusts the size of the image now to match the figures in the GIF. Developers
adjusted this value manually in the past with less than useable results in some cases.

1.

Double−click the Header entry. You’ll see the Edit Header dialog shown Figure 14.9. It helps you to
change characteristics associated with the GIF—for example, the background color. Notice the Loop

2.

Using the GIF Construction Set

333

option on this dialog. If you keep this value set to 0, the GIF will continue looping indefinitely. This
is a great idea, in most cases, but you might want to set this value to something else to save system
resources when needed.

Figure 14.9: Use the Edit Header dialog box to change the overall characteristics of the GIF.
Set any header options. The example sets the number of loops to 10 for testing purposes, but you can
set this value as you see fit. The example also sets the background color to white (color number 215).
Click OK to make the change permanent.

3.

Click the + button and select Image from the drop−down list (or use the Block Ø Merge command).
This command helps you to add an image to the GIF. You’ll see a standard File Ø Open dialog.

4.

Double−click the first file you want to use in the animation. In this case, you’d double−click
Time1.GIF. You’ll see the Palette dialog shown in Figure 14.10. The palette for this graphic doesn’t
match the standard palette used by GIF Construction Set. Note that older versions of the GIF
Construction set provided more options.

Figure 14.10: Use the Palette dialog to modify the method used to handle color in imported graphics.

5.

Select the Dither This Image to the Global Palette setting for compatibility reasons. Click OK to
complete the process. GIF Construction Set will insert a new graphic into the GIF.

6.

Click the + button and select Image from the drop−down list. You’ll see the same File Ø Open dialog
as before.

7.

Select the next image in the series and click OK. Click OK again if GIF Construction Set asks you
about the palette setting. GIF Construction Set will automatically insert the image in the next position
of the animation sequence.

8.

Repeat steps 7 and 8 for the remaining GIFs in this animation (Time2.GIF, Time3.GIF, and so on).
Now we have to insert some controls to make this image work properly.

9.

Double−click Block 3 (the second image). You’ll see an Edit Image dialog like the one shown in
Figure 14.11. Notice that this dialog tells you about the image. You can also use this dialog to add
control blocks between image elements. Control blocks allow you to modify the behavior of the
animated GIF. For example, you can use a control block to set the time between pictures. Many
browsers expect a control block between every image in your animated GIF, so you must add a
control block starting with the second image.

10.

Using the GIF Construction Set

334

Figure 14.11: Use the Edit Image dialog box to change the characteristics of an individual cel.
Check the Control Block option. Set the Delay field to 1. Click OK to add the control block. You
won’t see any difference in the main window.

11.

Click the next Image entry.12.
Repeat steps 11 and 12 for each of the images. You’ll end up with a series of images, as shown in
Figure 14.12. (Make sure you add a Control object to the last image, since the animated GIF will
automatically loop back to the first image.)

Figure 14.12: The end result is a series of images with control settings.

13.

To view the completed animation, click the View button. Press Esc to exit the viewing area.14.
The only thing left to do is save your animated GIF file. Use the File Ø Save As command to do that.
You could use any filename, but for the purposes of this example, save the file as AnimatedTime.GIF.

15.

Now you have an animated image that you could display using a number of techniques, including using a
browser window. Interestingly enough, the animated GIF is simply a series of images—nothing more. So you
can also use it as an image list within a DirectX application by clipping offsets within the image. The number
of ways to use the stacked image technique found in animated GIFs are nearly unlimited.

Tip You can find a demonstration of how to use an animated GIF within a desktop application in
the \Extras\AniDisplay folder of the CD. The example folder contains complete source code
and documentation, plus a test file you can use with the example. You can also use this
example to test other animated GIFs downloaded from sources such as the Internet.

Using the GIF Construction Set

335

Where Do You Go from Here?

This chapter has shown you the basics of using DirectX functions and interfaces. You learned about both
standard function calls and callback functions. In general, you’ll find that this chapter provides all of the
basics you need to construct any DirectX application. In fact, we’ve already looked at what you’ll need to do
to put a 2D application together.

Although you have all of the basics you need to know, this chapter hasn’t even begun to explore the 2D
features of DirectX. This is a good time to explore the 2D capabilities more and spend more time working
with the data structures we discussed in the previous chapter. DirectX is a technology best learned one step at
a time. For example, you should learn more about the math required for 2D drawing—something we haven’t
discussed much in this chapter.

At this point, you know how to work with a basic 2D application. Now you need to know how to put a 3D
application together and how to apply more advanced programming techniques. The use of 3D drawing is
increasing, so knowing how to work with the 3D functionality that DirectX provides is important. Chapter 15
will show you the basics of working with 3D applications. We won’t do anything fancy, but you’ll learn
enough to perform the required conversions for the managed environment.

Where Do You Go from Here?

336

Chapter 15: Creating Applications with DirectX 8.1

Overview

The past two chapters have helped you understand the data structures, functions, and other elements that make
up DirectX in general and DirectX 7 specifically. This chapter moves from DirectX 7 to DirectX 8.1. Both
versions of this technology are still in common use, so it’s important to know about the feature sets of both
products. The first section of the chapter will provide an overview of these differences so you can write
applications that use the full functionality that each version can provide.

In general, most developers currently write 2D drawing applications to the DirectX 7 standard but use DirectX
8.1 for 3D drawing. I say in general because you’ll find exceptions to the rule. This chapter includes some 3D
drawing examples so that you can see how this technology works with DirectX 8.1.

The final piece of the puzzle for this chapter is to look at some of the other tools that the DirectX SDK
provides. It’s important to know what tools you have at your disposal when you install the SDK because
creating a 3D drawing is difficult (perhaps impossible) without them. This chapter will discuss the DMO Test
utility, the Force Feedback Editor, and the DirectX Texture Tool. The DirectX Texture Tool is actually the
most important of the three because it helps you create realistic drawings with less work than drawing every
surface individually.

Note As with the other DirectX chapters in this book, the goal of this chapter is to help you
understand DirectX use within the managed environment. The examples aren’t meant to make
you a DirectX programming wizard, nor are they meant to show you every feature of
DirectX—that would require another book. The examples will help you understand how
DirectX fits within the managed environment and alerts you to any oddities that you might
encounter making the various interfaces work. Our point of concentration in this chapter is
what makes DirectX 8.1 different from DirectX 7, which means we’ll also discuss differences
in working with the interfaces in the managed environment.

An Overview of DirectX 7 and DirectX 8.1 Differences

DirectX has been an example of continuous evolution. There are a number of reasons that Microsoft created
DirectX 8.1. Obviously, the hardware capabilities addressed by DirectX 7 are now common and
ordinary—DirectX 8.1 addresses the capabilities of the new hardware on the market. Of course, Microsoft has
to add the usual number of new capabilities to the product. Finally, there are the usual bug and performance
fixes to consider, as well as features that make the product easier to use.

The following sections discuss the differences between DirectX 7 and DirectX 8.1 in greater detail. The
features aren’t necessarily discussed in light of the “gee whiz” factor they provide or in the order that
Microsoft marketing thought important. The focus of these sections is features that make life easier for the
developer and improve performance. I’ve paid particular attention to features that might cause developers to
have problems in the managed environment.

Consolidated Objects

One of the issues that Microsoft addressed in DirectX 8.1 was “object creep.” In DirectX 7, it seems that you
have an object for everything and that each of those objects requires a separate creation step. If you want to

337

create a DirectDraw and a Direct3D object in DirectX 7, you’ll likely have to perform two separate steps and
create two separate objects. The problem with this approach is that it’s hard getting the two objects to work
together, so you end up writing some odd code to do it. DirectX 8.1 consolidates DirectDraw and Direct3D
into a single DirectX Graphics module with the name of Direct3D. Now you can create 2D and 3D graphics
on the same surface without the problems introduced by separate objects.

Consolidation is good from the usability viewpoint. Using one object to create both 2D and 3D elements
makes life easier for the developer because now you don’t have as many objects to worry about. However,
consolidation can also become problematic in the managed environment. It’s important to remember two
essential points about DirectX. First, it was and still is optimized for use by Visual C++ developers (despite
the kludges added to support Visual Basic). Second, Visual C++ offers flexibility that the managed
environment can’t easily provide. In this case, consolidation could mean subtle errors in your application.
These objects require data in data structures. Set a data structure up incorrectly and you might find that the
application doesn’t work as anticipated. The data might be correct for a 2D object but not for the 3D object
that you’re trying to create.

Tip Visual Basic developers who want and need more than the basic DirectX SDK can provide will want to
look at the Phantom Reality site at http://www.phantomreality.com/. This vendor produces an assortment
of 2D and 3D multimedia tools.

Sometimes the objects are still separate, but Microsoft has introduced an additional level of cooperation.
That’s the case with DirectMusic and DirectSound. A DirectMusic object can now load sounds found in
WAV files. Even though the DirectSound object still exists and most developers will use it when they play
sounds alone, the DirectMusic object is the focal point for DirectX 8. You can place both sounds and music
using a single DirectMusic object. Of course, this introduces another confusion factor for managed
environment developers—it’s possible to create subtle data errors that DirectX won’t catch because of the
additional flexibility it provides.

Updated Objects and Features

One of the best new features for developers who work in the unmanaged environment is the addition of a
debug build. This debug build helps you learn what’s going on inside DirectX. It works the same as the debug
builds you create for your application. The only problem is that the DirectX libraries are unmanaged code
applications, which means that Visual Studio .NET might stumble a bit when viewing them. You’ll find that
you can generally find what you need, but not always. Sometimes the debugger just won’t work with the
unmanaged code. You can switch between debug and released versions of DLLs using the DirectX Control
Panel Application described later in this chapter.

You’ll find that Microsoft spent a lot more time working on the Direct3D library than the DirectDraw library
in DirectX 8.1 for good reason. Most, if not all, game programming now uses 3D drawing techniques. CAD
and other engineering and scientific disciplines also rely on 3D drawing techniques. About the only area
where 2D still reigns supreme is business graphics and only because many business graphics still have to
appear in print. Eventually, business graphics will also use 3D drawing techniques. The following list
provides a quick overview of some of the 3D drawing additions for DirectX 8:

Special Effects The special effects now include strings and you can add comments. You can still use special
effects that are limited by the FOURCC designations, but Microsoft no longer requires that you use them.
This means you have access to more types of special effect files. The problem for the managed environment
developer, however, is ensuring that those files will actually work in the managed environment with the target
hardware. Generally, you’ll still find that using files with the FOURCC designations is the safe bet.

Updated Objects and Features

338

Pixel Shaders DirectX 8.1 comes with better support for pixel shaders. The developer has access to
additional instructions, modifiers, and registers. This particular feature won’t present any more problems in
the managed environment than it does for developers in the unmanaged environment.

Texture Library The biggest change for the texture library is support for dynamic textures. This feature
enables you to create a basic texture that morphs to create what appears as multiple textures to the end user.
This version also uses a higher−quality encoding algorithm and allows you to obtain information about the
texture without loading it into memory first. A new constant, CONST_D3DPOOL.D3DPOOL_SCRATCH,
enables you to load textures that the physical devices can’t support. The library provides methods to transform
the texture into a form that the physical devices can support.

Math Library DirectX is math intensive. The developer must compute the exact location and form of each
object during an animation sequence. Consequently, any help that the math library can provide will only speed
the coding of an application. The library adds support for most important functions for 3D−Now!, Streaming
SIMD Extensions (SSE), and SSE2. It also adds support for 16−byte aligned matrices.

Note If you haven’t worked long with DirectX, you might not know about 3D−Now! and SSE/SSE2.
3D−Now! is AMD’s built−in processor support for graphics. It purportedly provides better graphics
execution times than Intel’s Multimedia Extensions (MMX) technology. Read more about this
technology at
http://www.amd.com/us−en/Processors/_TechnicalResources/0,,30_182_857_992,00.html. Intel, not to
be outdone by AMD, has introduced SSE and SEE2 technologies that reduce the overall number of
instructions to perform an application task. SSE2 provides 144 more instructions than the SSE variant.
You can read more about this product at http://www.intel.com/design/_Pentium4/prodbref/index.htm.

Drawing Features DirectX 8 improves the 3D drawing capabilities of DirectX in general. The new features
include multisampling rendering support, point sprites, 3D volumetric textures, and higher order primitives. I
won’t cover these updates in any depth in the book, but it’s important to know they exist. None of these new
features will cause problems for managed environment developers except that performance might not be what
you expect.

DirectInput features a number of new input device changes. A game−specific feature is support for additional
pedal data. Even though some developers might associate the joystick with games, others use the joystick with
other application types, especially those in the scientific arena. The updates for joystick support include better
recognition of joystick slider data. Precision measurements make both scientific and game applications work
better. Finally, DirectInput has added support for action mapping. This feature makes it possible to map a
physical input device element to an action in the application. For example, clicking the button on a joystick
could fire a machine gun or retrieve a sample using the robotic arm of a remotely operated vehicle (ROV).

Some developers felt that DirectPlay support in DirectX 7 was a joke, and a very bad one at that. DirectPlay
has improved in DirectX 8.1 in so many ways that it might not be possible to discuss them all here. The
feature that will definitely matter most includes better security. Developers will find that DirectPlay now
provides good support for firewalls and also network address translation (NAT). Even though security is
important, most gamers are looking for performance. Microsoft has completely rewritten the objects for
DirectPlay so that it performs better. You’ll also find that DirectPlay now uses easy−to−understand URLs
instead of GUIDs for destination information. Finally, DirectPlay now includes support for voice transmission
so you can talk to other people while using a network connection to transmit other forms of DirectX data.

Updated Objects and Features

339

An Overview of the Tools

One of the newest tools provided with DirectX 8 is the MeshView Tool. This tool loads, displays,
manipulates, and stores meshes used to display 3D data on screen. You can view the mesh information in
wireframe, edge, crease, strip, adjacency, or normal form (or any combination thereof). The utility will
provide a skin for the mesh, and you can choose the form of that skin along with the technique used for
skinning. The MeshView Tool includes a number of shapes, including cylinder, sphere, torus, square, and
teapot. We’ll discuss this tool in greater detail in the section titled “Using the MeshView Tool” in Chapter 16.

Another tool that’s been around, but is greatly improved for DirectX 8, is the DirectX Control Panel
Application. Unlike the DirectX Diagnostic Tool, this utility is designed specifically for developer use. It
enables a developer to modify the way DirectX reacts to an application during critical stages of debugging.
We’ll examine the DirectX Control Panel Application in more detail later in this chapter.

Previous versions of DirectX left the DirectPlay developer out in the cold—there weren’t any tools for testing
a connection. Consequently, developers had to rely on trial and error to get connections correct and they often
failed. The DirectPlay Network Simulator makes it possible to test your DirectPlay applications in greater
depth before you actually begin testing them on an actual network. This means that you’ll spend less time
debugging and also end up with a better application in the long run. We’ll discuss this tool in greater detail in
the section titled “Using the DirectPlay Network Simulator” in Chapter 16.

Using the DirectX Control Panel Application

You’ll find the DirectX Control Panel Application in the Control Panel after installing the DirectX SDK. This
applet has the usual DirectX icon. What it does for developers is nothing less than amazing. Once you begin
using this tool, you’ll wonder why Microsoft didn’t include it in previous versions of the product.

Note For whatever reason, the DirectX Control Panel Application doesn’t seem to install
properly into the Windows XP System32 folder. If this problem occurs on your system,
simply copy the DirectX.CPL file from the \DXSDK\bin\DXUtils folder to the
\WINDOWS\system32 folder of your system. Restart your machine and the DirectX
Control Panel Application should appear in the Control Panel. If all else fails, you can
double−click the DirectX.CPL file from within Windows Explorer to start it.

When you initially open the DirectX Control Panel Application, you’ll see the DirectX tab of the DirectX
Properties dialog box. This tab tells you which version of DirectX your system is running and also provides
access to a button found on every other tag—DxDiag. The DxDiag button will open the DirectX Diagnostic
Tool that we discussed in section titled “Using the DXDIAG Utility” in Chapter 13.

The Direct3D tab contains the first developer−related information for this utility. Figure 15.1 shows the
features of this tab. As you can see, it contains a lot of developer−oriented controls. The first control that you
should become familiar with is the Debug Output Level slider. Interestingly enough, you can tell DirectX to
tell you every woe it has or to shut up and process information. Most developers will want to turn off the
output unless they’re actually creating an application because it can become quite annoying. This slider
appears on every tab so you can control the debug output of each DirectX feature individually.

An Overview of the Tools

340

Figure 15.1: The Direct3D tab controls operation of 3D drawing on your system.

Note Don’t confuse the Direct3D tab with the DirectDraw tab. Use the Direct3D tab to control 3D
drawing data and the DirectDraw tab to control 2D drawing data. In some cases, you’ll want to
change the settings on both tabs to ensure that you have the system set up correctly for the
current task.

The next point of interest is the Debug/Retail settings. Every tab also has this feature. It enables you to switch
between the debug and retail versions of DirectX so that you can test your application in both environments.
Previous versions of DirectX forced the developer to use either the debug or the retail version of the product
and didn’t offer any means of tuning the debug output. As you can see, DirectX 8.1 is a vast improvement
from the developer’s perspective. Note that this feature only affects DirectX 8.0 and DirectX 8.1 libraries—it
won’t affect older libraries installed on your system.

The middle portion on the left side of the dialog box contains three check boxes that enable you to control
performance. You’ll use the Allow Hardware Acceleration feature most often. Clearing this option will force
DirectX to use software emulation, even if hardware acceleration is available, so that you can measure
worst−case performance for a system setup. These options might appear grayed out if your system doesn’t
provide support for the required feature.

The two debugging check boxes on the right side of the dialog box enable you to control how DirectX breaks
within the debugger. Sometimes it’s useful to see how your application affects DirectX so that you can change
the way your application makes function calls and performs other tasks. This is one of the most useful features
for developers who are trying to get DirectX to work in the managed environment because it can also help you
tune your function, structure, and interface declarations.

The final area of interest on the Direct3D tab is the Drivers list box. This area contains a list of the drivers that
affect Direct3D. However, unlike most driver lists, this one is formatted for developer use. You can use it to
obtain information such as the GUID for the driver—a handy feature we could have used for the applications
in previous chapters.

The DirectDraw tab shown in Figure 15.2 comes next. Remember that Direct3D and DirectDraw are
combined. You won’t find the usual Debug Output slider on this tab. However, some features are the same.
For example, there’s a Use Hardware Acceleration check box that you can use to force the driver to use
software emulation. This option is separate from the Direct3D option.

An Overview of the Tools

341

Figure 15.2: The DirectDraw tab augments the information found in the Direct3D tab.

Some of the options are answers to developer requests of the past. For example, you couldn’t use the Print
Screen key to output screen data in the past. DirectX 8 provides this option so developers can grab screen
shots with little trouble with the understanding that the Print Screen key can affect application execution.

Click Advanced Settings and you’ll see a DirectDraw Advanced Settings dialog box that allows you to
modify the normal operation of DirectX. For example, you can disable MMX or Accelerated Graphics Port
(AGP) support to emulate certain system setups. You can also simulate a system lock failure and fine−tune
emulation support.

The last three buttons display standard dialog boxes. For example, click Display Properties and you’ll see the
standard Display Properties dialog box. The last two options on this dialog tab display the modes that the
display adapter supports and allow you to change the default refresh rate.

The DirectInput tab shown in Figure 15.3 contains the usual slider and Debug/Retail option. As you can see,
this tab contains check boxes that determine which DirectInput features generate debug information. This is
an important option because you might be interested in only one DirectInput area in your application. Getting
debug information from all of the devices would prove confusing to say the least. In addition, an application
might not even use the mouse or the joystick. Some developers might want to eliminate the keyboard if
they’re using it for debugging purposes. In short, these four options help you control the debugging
environment with greater accuracy.

An Overview of the Tools

342

Figure 15.3: The DirectInput tab provides options for controlling which devices generate debug information.

Note The HID Support check box located on the DirectInput tab is for devices that provide this
special form of support. Many mouse vendors provide this support and it’s normally an option
for game controllers. Look in the Human Interface Devices folder of the Device Manager to
determine if your system has human interface device (HID) support. Generally, a HID
provides additional input about the support it provides and could include special functionality,
but you’ll normally use it as a standard device in DirectX programming.

DirectX 8.1 also provides the means for emulating the keyboard or mouse. You might wonder why this
feature is important at first, only to discover how essential it is when you’re attempting to debug the
application. The emulation feature helps you keep the application environment separate from the debugging
environment. The act of separating the two environments reduces a noticeable delay when stepping through an
application in debug mode.

Click Gaming Options and you’ll see the Game Controllers dialog box. This dialog box contains settings for
adding, removing, and configuring game controllers on your system. The four controller types include
joystick, game pad, flight yoke or stick, and racecar controller. You can also choose the number of controller
axes and buttons, add support for a point−of−view (POV) control, and include rudders or pedals. If the
controller fails to work as anticipated, you can troubleshoot it. There are also options for calibrating the
device.

The DirectMusic tab is pretty mundane compared to the other tabs we’ve discussed so far. It contains the
usual Debug Output Level slider and the Debug/Retail options. The main portion of this tab is filled with a list
of music ports. However, unlike the Drivers list on the Direct3D tab, this one doesn’t provide you with any
driver information. In sum, this tab provides quick information and debugging selections but not much else.

The DirectPlay tab shown in Figure 15.4 is unusual in that it doesn’t provide a Debug/Retail selection. Notice
that this tab does provide a Break on Assert option that controls whether the application debugger will stop
when it detects an assert error in the DirectPlay modules. Most developers will keep this option cleared unless
the application is failing every time there’s a network dialog. In general, you’ll want to set the Debug Output
Level slider to its maximum level first to see if the problem is found in the debugging messages that the
module outputs. Breaking on assert can cause odd problems in the managed environment. In fact, you might
find that it leaves the system in an unstable state that requires an eventual reboot.

An Overview of the Tools

343

Figure 15.4: The DirectPlay tab lacks some of the features found on the other tabs.

The DirectSound tab also lacks the Debug/Retail option. However, it does contain the Debug Output Level
slider. The Media Properties pushbutton displays the standard Sounds and Audio Devices Properties dialog
box. The Sound Playback and Sound Recording list boxes contain a list of sound devices you can use for
debugging. If you choose a specific device rather than the primary device option, the dialog box will also
show the driver module information for the selected sound device.

Using the DMO Test Utility

A DirectX Media Object (DMO) is a COM object that processes data located in a client−supplied buffer.
DirectX commonly uses a DMO for special effects. For example, a DMO could add a reverberation effect to
sound data. Of course, before a DMO can add reverberation effects to a sound file, it must provide the proper
COM support. The DMO Test utility can check a DMO for proper COM operation in both the streaming and
API levels. In short, it’s a form of ActiveX Control Test Container for DirectX. This tool can check the DMO
for correct COM support, but it can’t test the DMO for correct operation. In other words, a DMO can provide
all of the correct support and still not create a reverberation effect.

Testing a DMO, even one that you haven’t created, means creating a test file, selecting some test sources,
determining which tests you want to run, and finally running the tests. It sounds like a lot to do, but you can
actually perform the task with little effort because many of the tools you need are graphical—just point and
click. We actually need the services of another utility to create the test file and select a test source. The first
section that follows shows how to create the test file using the GraphEdit utility described in more detail in
Chapter 16. After we create a test file, you’ll see how to use the DMO Test utility.

Creating a Test File Using GraphEdit

The GraphEdit utility is extremely versatile, and this section shows only one use for this utility. We need to
create a test file for the WavesReverb DMO tested in the next section of the chapter. Because this is a sound
source, we’ll need to begin with a WAV file. The following steps show how to create a suitable test file:

Use the File Ø Render Media File command to open a WAV file. GraphEdit will automatically create
a standard rendering sequence similar to the one shown in Figure 15.5. This image shows the
sequence that a standard WAV file goes through during the playing process. However, we want to test

1.

Using the DMO Test Utility

344

a DMO, so this sequence won’t work for the example. We need to add a DMO filter to the mix.

Figure 15.5: GraphEdit begins by creating a standard rendering sequence for your WAV source file.
Use the Graph Ø Insert Filters command to display the list of filters available to the GraphEdit utility.
Figure 15.6 highlights the DMO filters and focuses on the Waves−Reverb option. This is the DMO
we want to test.

Figure 15.6: The WavesReverb DMO appears in the DMO Audio Effects folder.

2.

Select the WavesReverb option and then click Insert Filter. The filter will appear in the GraphEdit
diagram. It isn’t connected to anything yet, so you won’t notice any difference in the sound if you
play it.

3.

Select the arrow connecting the Wave Parser to the Default Sound Device object and delete the arrow.4.
Create a connection between the output of the Wave Parser to the input of the Waves−Reverb object.
GraphEdit will automatically add an ACM Wrapper object to the series of objects.

5.

Create a connection between the output of the WavesReverb object to the Default Sound Device.
Click Play. You should hear the reverberated sound. We don’t need the Default Sound Device object
for the test file, but it’s always a good idea to run a test to ensure that you have the right series of
objects connected together.

6.

Delete the Default Sound Device object. At this point, clicking Play will result in hearing nothing at
all. There’s no output. We need an output, but not the one originally provided. The DMO utility
requires the output of the DMO Data Dump filter.

7.

Insert the DMO Data Dump filter using steps 2 and 3. You’ll find the DMO Data Dump filter in the
DirectShow Filters folder. When you insert the DMO Data Dump filer, it will ask for the name of an
output file. Type MyTest and click Open.

Note Windows XP often fails to register the DMO Data Dump filter, so you wont’
find it in the DirectShow Filters folder. If this happens, open a command
window. Locate the \DXSDK\bin\DXUtils folder on your system. Type
RegSvr32 DMODump.DLL and press Enter. You’ll see a message that the
DLL is properly registered.

8.

Connect the DMO Data Dump filter to the WavesReverb output. Your diagram should look like the9.

Using the DMO Test Utility

345

one shown in Figure 15.7.

Figure 15.7: The final setup for the test source
Click Play. The file will play and the Play button will highlight again. The test file is complete.10.

Testing the WavesReverb DMO

It’s finally time to perform a test on the WavesReverb DMO. You’ll find the test files for this example in the
\Chapter 15\DMOTest folder of the CD (including the files that we created in the previous section). The
example will show how to run all of the available tests. Your DMO test might be more selective or your might
create custom tests. The following steps show how to set up the DMO test:

Use the Tests Ø Select Tests command to display the Select Tests dialog box shown in Figure 15.8.
This dialog contains the standard set of tests that Microsoft suggests you run on a DMO. You can also
use these tests to check the performance of an existing DMO in a new test scenario, such as after
installing updated DLLs or new hardware. Of course, there’s nothing to stop you from testing
multiple DMOs.

Figure 15.8: Select one or more of the tests to run on one or more DMOs.

1.

Click Add All to add all of the standard tests as shown in Figure 15.8. Click OK to close the Select
Tests dialog box. At this point, we know which tests will run but haven’t selected a test DMO yet.

2.

Use the Tests Ø Choose DMOs command to display the Select DMOs for Test dialog box shown in
Figure 15.9. Notice that this dialog box shows the WavesReverb DMO checked. You could test any
of the DMOs in this list, but the example will check only the WavesReverb DMO. We still need to
add the test file for this DMO. If you run the tests without adding at least one test file (you can always
add more), at least some of the tests will fail.

3.

Testing the WavesReverb DMO

346

Figure 15.9: Check the DMOs that you want to test.
Right−click the WavesReverb DMO entry and choose Select Test File from the context menu. You’ll
see a Select Test Files dialog box.

4.

Click Add. You’ll see an Open a File dialog box.5.
Locate the test file we created using GraphEdit. Highlight the file and click Open. You’ll see the file
added to the Select Test Files dialog box.

6.

Click OK. The Number of Test Files column entry for the WavesReverb DMO will show that you
have one test file selected. We’re ready to run the selected tests on the Waves−Reverb DMO.

7.

Click OK to close the Select DMOs for Test dialog box. Use the Tests Ø Run All Tests command to
begin the testing process. It will take a while for DMO Test to check all of the test conditions. When
the test series completes, you should see output similar to that shown in Figure 15.10.

Figure 15.10: The output screen will show whether the DMO passed or failed the tests.

8.

It might disturb you to see that this built−in DMO failed two tests. I ran the same DMO with several input
files and it failed on some but not on others. The example file was specifically selected to show a failure
condition. When you do test a DMO, it’s important to use more than one test file so you can see how the
DMO reacts to a variety of media types. In addition, it’s important to run the tests more than one time—this
DMO doesn’t fail with the same data file every time the test is run. The data and environment you choose for
testing is just as important as the test scenarios.

Note The MyTest.PRO file is a text file that you can easily edit with Notepad. You’ll need to edit
this file to change the location of the MyTest file used for testing purposes.

Testing the WavesReverb DMO

347

A Simple DirectSound Example

We saw in the previous section that DirectSound supports a number of DMOs that can add effects to sound
files. In this section, we see how one of those DMOs works in practice. Listing 15.1 shows the code for a
basic DirectSound example. You’ll find the source for this example in the \Chapter 15\C#\DirectSound and
\Chapter 15\VB\DirectSound folders of the CD.

Listing 15.1: Playing a Sound Using DirectSound

private void btnPlay_Click(object sender, System.EventArgs e)
{
 DirectX8 DX8; // DirectX 8 object
 DirectSound8 DS8; // DirectSound 8 object
 DSBUFFERDESC SecDesc; // Secondary sound buff desc.
 DirectSoundSecondaryBuffer8 SecBuff; // Secondary sound buffer.
 DSEFFECTDESC[] Effects; // Array of sound effects.
 Int32[] Results; // Array of result values.

 // Initialize the DirectX objects.
 DX8 = new DirectX8Class();
 DS8 = DX8.DirectSoundCreate("");
 DS8.SetCooperativeLevel(this.Handle.ToInt32(),
 CONST_DSSCLFLAGS.DSSCL_NORMAL);

 // Initialize the sound buffer. Allow control of both the
 // sound effects and the volume.
 SecDesc = new DSBUFFERDESC();
 SecDesc.lFlags = CONST_DSBCAPSFLAGS.DSBCAPS_CTRLFX |
 CONST_DSBCAPSFLAGS.DSBCAPS_CTRLVOLUME;
 SecBuff = DS8.CreateSoundBufferFromFile(@txtSource.Text,
 ref SecDesc);

 // Check for special effects.
 if (cbReverb.Checked)
 {
 // Create a special effect.
 Effects = new DSEFFECTDESC[1];
 Effects[0].guidDSFXClass =
 AUDIOCONSTANTS.DSFX_STANDARD_WAVES_REVERB;
 Effects[0].lSize = Marshal.SizeOf(Effects[0]);
 Effects[0].lFlags = 0;
 Results = new Int32[1];

 // Perform a cast on the two arrays.
 Array Effects2 = (Array)Effects;
 Array Results2 = (Array)Results;

 try
 {
 // Set the special effects.
 SecBuff.SetFX(1, ref Effects2, ref Results2);
 }
 catch (COMException COMErr)
 {
 // Display the error code and exit.
 MessageBox.Show("Error Code: 0x" +
 COMErr.ErrorCode.ToString("X") +

A Simple DirectSound Example

348

 "\r\n" + COMErr.Message,
 "COM Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }
 }

 // Play the sound.
 if (cbLooping.Checked)
 {
 // Play with looping enabled.
 SecBuff.Play(CONST_DSBPLAYFLAGS.DSBPLAY_DEFAULT |
 CONST_DSBPLAYFLAGS.DSBPLAY_LOOPING);

 // Display a quit message.
 MessageBox.Show("Click OK to Stop Looping",
 "Loop Stop Message",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);

 // Stop the sound.
 SecBuff.Stop();
 }
 else
 // Play just once.
 SecBuff.Play(CONST_DSBPLAYFLAGS.DSBPLAY_DEFAULT);

 // Clean up the objects.
 SecBuff = null;
 DS8 = null;
 DX8 = null;
}

The code begins by creating the DirectX 8.1 object and associated DirectSound object. You must set the level
of cooperation for the DirectSound object using the SetCooperativeLevel() method or DirectSound won’t play
anything at all. In most cases, you want to set the level of cooperation to normal.

Notice that we’re using a secondary buffer in this example. The DirectSoundSecondaryBuffer8 object,
SecBuff, will act as the conduit for playing sounds. To create a secondary buffer, you need to create a
description using the DSBUFFERDESC structure. Buffers can also use a number of flags. It’s important that
you specify the correct flags or the buffer won’t work as anticipated. In this case, the code provides flags for
both sound effect and volume control. The buffer is actually created by the CreateSoundBufferFromFile()
method. There are also ways to create the buffer from scratch, to use an alternate sound path, and to use a
resource, so you don’t have many limitations when using DirectSound.

Adding a sound effect is relatively easy. All you need to do is create a DSEFFECTDESC array and an array
of Int32 values. The DSEFFECTDESC array holds the GUID for each of the effects that you want to add to a
buffer. The Int32 array contains the result values from adding the sound effects to the buffer. The SetFX()
method performs the actual addition.

The SetFX() method represents the first DirectX problem for the book. The default import specifies a numeric
input as the first argument, the effects array, and the results array. There’s no override for a situation where
you don’t want to provide any new effects but want to remove the existing effects. The DirectX SDK
documentation specifies that you must provide a value of 0 and two null values for the arrays, but this is

A Simple DirectSound Example

349

impossible with the current interoperability layer. There are only two ways around this problem. First, you can
create your own interface implementations. Second, you can create a new object each time you want to
remove the effects added to an existing object.

The final bit of code shows how to implement looping in the example. When you add looping to a sound, it
continues to play over and over again until stopped. The example shows a quick method for starting and
stopping the sound. Of course, you can also play the sound once and exit the application.

Notice that the example ends by cleaning up the objects. Make sure you always clean up your DirectX objects.
In this case, you must clean them up in the opposite order of creation. Otherwise, you’ll see an error message
as the application exits.

Using the Force Feedback Editor

Most input devices do just what their name implies—they provide an application with some type of user
input. The user experience is one of sitting in place playing a game. However, as computer graphics and
sounds have helped gamers become more immersed in their games, some vendors thought it would be a good
idea to add some sense of feel to the input device. After all, a pilot actually feels the effect of the air rushing
against the skin of the plane and the engine pulsing with power. That’s the reasoning behind force
feedback—it provides a joystick with instructions that enable it to simulate the feel of the yoke on a real
plane. The user experience becomes more realistic because now sights, sounds, and even sensations that are
modeled after the real−world experience (or someone’s interpretation of that experience) surround the user.

The Force Feedback Editor creates standard resource interchange file format (RIFF) files that contain
instructions to create a feel within a joystick, yoke, gamepad, or other input device designed to provide tactile
output. You can start the application and even create files with it even if you don’t have a force feedback
device attached to the system. However, if you want to test the files, you’ll need an input device with force
feedback capability. Generally, it’s better if you use the same type of device that the game user will employ to
play the game because different devices will react differently to the force feedback instructions. The sensation
of touch is also highly subjective, which means you should have several developers test the file. Figure 15.11
shows the initial Force Feedback Editor window.

Figure 15.11: The Force Feedback Editor helps you create tactile feedback for users of your application.

Note

Using the Force Feedback Editor

350

This section isn’t implying that the only use of force feedback is game design, but that’s the most
common way that force feedback is used today. Force feedback is also useful in any simulation. For
example, a driving school simulator could employ force feedback within the car steering wheel to
reproduce the effects of the road. In some cases, force feedback would be useful (and was even used
before it appeared on personal computers), but these simulations rely on complex and proprietary
machines. For example, pilots commonly train in simulators that offer a variety of tactile feedback. It’s
unlikely that these huge training systems will be replaced with a personal computer any time soon.
Consequently, the main focus of force feedback development today is the game.

You can create force feedback files of almost any length using the Force Feedback Editor. The application
begins by showing you about 10 seconds worth of force feedback. Some sequences, such as machine gun fire,
might require less time, while others, such as a flight sequence, might require more. In general, tactile
feedback sequences are repeated throughout the application as needed. In some cases, such as road effects for
a car, the same sequence is repeated over and over again. You can control the time interval displayed on
screen by changing the position of the Time Scale slider at the bottom of the display.

The application provides the full list of effects, all of which are accessible from the Force Feedback Editor
toolbar. You can also select an effect from the Effect Ø Insert menu. The effects are separated into three
groups as described in the following list:

General A general effect is one that normally applies over the range of the effect sequence. General effects
include constant force and ramped effects. A constant force effect changes the amount of force required to
perform a task and maintains that level of force throughout the effect. A ramp effect either starts at a high
level and decreases or starts at a low level and increases.

Wave Wave effects are short and choppy. Imagine a bumpy road for a driving simulation or the effect of
machine gun fire. The effect of each wave effect is a tad difficult to describe in words—it’s something you
actually have to feel. Wave effects come in several varieties, including square, sine, triangle, sawtooth up, and
sawtooth down. The sine wave effect tends to be rolling, while the square wave is bumpy and the triangle
wave is sharp. Of course, your perception will likely vary from mine.

Condition Some tactile feedback falls into well−known sensations based on the user’s interaction with their
environment. For example, most people know the feeling of bouncing up and down on something like a
trampoline quite well from childhood. This is the spring effect. Likewise, inertia has well−known effects. For
example, you feel inertia when going around a corner in a car.

Let’s look at this tool in more practical terms. Say you wanted to create an effect that felt like a car going
around a corner a little too quickly. Figure 15.12 shows that you might combine a triangle effect, an inertia
effect, and two ramps. You’ll find this example in the \Chapter 15\ForceFeedback folder of the CD.

As you can see, each effect is placed within a particular time sequence. You can move the effects around and
change their length. Of course, this only defines when the effect will happen and how long it will happen.
True tactile feedback requires more input than time and duration, and this input is often of a complex nature.

Using the Force Feedback Editor

351

Figure 15.12: Creating an effect sequence means combining different effects over time.

Each effect also comes with a set of properties you can adjust. We’re not going to visit every effect and its
associated properties—that’s a topic for another book. However, we can look at one effect. Right−click
RampUp1 and choose Properties from the context menu. Figure 15.13 shows the tabs for this effect. You
might be surprised at just how many things you can change about a simple ramp, but they all make a
difference in how the effect feels to the end user.

Figure 15.13: Even simple ramp effects have several properties that modify the tactile feedback the user
receives.

The Ramp tab controls how the effect varies over time. In this case, we’re telling the ramp effect to begin at a
low level and then increase to the maximum effect level over time. The envelope varies the manner in which
the effect changes. The ramp begins as a straight line, but you can modify the effect so it uses a logarithmic,
sine, or other envelope. The Axes tab determines which axes of the input device are affected by the ramp. The
Timing tab tells how long the effect lasts and determines if there’s a delay in starting it. Finally, the General
tab contains a field for changing the name of the effect on screen. As you can see, there are many ways to
change what the user feels even within a single effect.

Using the Force Feedback Editor

352

This section hasn’t really explored the Force Feedback Editor completely, but you should have a better idea of
how it can change the user’s application experience. As mentioned earlier, even though force feedback is
currently the domain of game players, it does have many practical applications outside that arena. Given the
rate of computer hardware development, it may not be too long before all kinds of input devices employ some
form of tactile feedback. For example, imagine a garment design application where the designer could
actually feel the fabric as they designed the garment. The same thought holds true for many other scientific,
engineering, and art applications.

DirectX, the Managed Environment, and Performance

The question of DirectX compatibility and availability has consumed more than a few message threads in the
various Microsoft newsgroups. The DirectX API is substantial, and Microsoft designed it long before the
managed environment was even a concept, much less an implementation as it is today. Anything this complex
and designed so far outside of the conventions of the managed environment is bound to cause some level of
concern and controversy.

As you’ve learned throughout the three DirectX chapters so far, the support you can expect to receive from
the DirectX COM interface is less than complete. We had to create the DirectXHelper.DLL to overcome
certain problems with DirectX COM support. What you might not know is that parts of the DirectX COM
support were added for Visual Basic developers and never fully integrated into DirectX. For example, the
initial DirectX libraries created an object using standard function calls—not a special call that’s part of the
DirectX interfaces. Using DirectX as we have means adding a kludge to a kludge—a poor idea at best.

We’ve gotten around most of the problems in using DirectX in the managed environment. You’ve seen a
number of example applications that use DirectX, and you’ll see more as the book runs to completion.
However, there’s a question of performance to answer. Adding a kludge to a kludge can make a platform
unstable. You might run across problems we haven’t discussed in this chapter because of the way that DirectX
is put together. However, adding even one kludge to a system will result in a performance hit. Adding
multiple kludges together to create a coherent system makes the performance problem even worse.

The jury is still out on just how bad the performance problems are when using DirectX in a managed
environment. A few hard−core developers are saying that DirectX is completely unworkable in the managed
environment, but you’ve already seen that that viewpoint is a little extreme. However, it’s very likely that
complex applications might prove too much for the managed environment until DirectX 9 appears on the
scene. Even a moderately complex application will suffer some level of performance degradation.

The real issue is one of deciding whether the developer productivity and other gains offered by the managed
environment outweigh the performance and reliability concerns of using DirectX 7 or DirectX 8.1 in the
managed environment. For a simple application, the answer is relatively easy—use the managed because it
has too much to offer to ignore. When working with a moderately complex application, the answer might be
harder to come by, but most developers will probably choose the managed environment when performance
isn’t the main issue. Complex applications will probably require old techniques and the unmanaged
environment for right now, but be prepared to switch when DirectX 9 appears.

Using the Force Feedback Editor

353

A Simple DirectInput Example

DirectInput works with a number of devices. However, one element is true for all of them. Generally, you’ll
want to know the device’s current status. The example application for this section deals in part with that
scenario. However, before you can work with the device, you need to know that it exists. The code shown in
Listing 15.2 shows how to collect the DirectInput device information for your system. It also contains some of
the initialization code for this example. You’ll find the source code for this example in the \Chapter
15\C#\DirectInput and \Chapter 15\VB\DirectInput folders of the CD.

Listing 15.2: Enumerating the DirectInput Devices

private DirectX8 DX8; // DirectX 8 object
private DirectInput8 DI8; // DirectInput 8 object

public frmMain()
{
 // Required for Windows Form Designer support
 InitializeComponent();

 DirectInputEnumDevices8 Devs; // DirectInput enumeration.
 DirectInputDeviceInstance8 DevInst; // A single device instance.
 StringBuilder Output; // The output string.

 // Initialize the DirectX objects.
 DX8 = new DirectX8Class();
 DI8 = DX8.DirectInputCreate();

 // Display a list of DirectInput 8 devices.
 // Create a list of devices for this machine.
 Devs = DI8.GetDIDevices(CONST_DI8DEVICETYPE.DI8DEVCLASS_ALL,
 CONST_DIENUMDEVICESFLAGS.DIEDFL_ATTACHEDONLY);

 // Display the device list. Remember to start the
 // Counter at 1 for VB.
 Output = new StringBuilder();
 for (int Counter = 1; Counter <= Devs.GetCount(); Counter++)
 {
 // Get a device instance.
 DevInst = Devs.GetItem(Counter);

 // Addend the device information.
 Output.Append(DevInst.GetProductName());
 Output.Append("\r\n" + DevInst.GetInstanceName());
 Output.Append("\r\n" + DevInst.GetDevType());
 Output.Append("\r\n" + DevInst.GetGuidInstance());
 Output.Append("\r\n" + DevInst.GetGuidProduct());
 Output.Append("\r\n" + DevInst.GetGuidFFDriver());
 Output.Append("\r\n\r\n");
 }

 txtDevices.Text = Output.ToString();
}

As you can see from the code, the example begins by creating the appropriate DirectX objects. The code then
creates a device enumeration using the GetDIDevices() method. The flags you supply for this method
determine the type of output you receive. Normally, it pays to select the smallest subset of information

A Simple DirectInput Example

354

possible so that you only have to search through a limited number of devices. In this case, the example limits
the output to the attached devices.

Note Notice that the code in Listing 15.2 contains an odd setup for the for loop. You must initialize
Counter to 1 because that’s what Visual Basic 6 would use. This is a common problem when
working with DirectX. The error message you receive when this problem occurs won’t match
the error seen in Visual Basic 6 because it’s an interoperability problem now. If you see the
infamous "The parameter is incorrect" error message, this is one place to look.

After the code creates a device enumeration, it creates an instance of each device using the GetItem() method
in a loop. Remember that DirectX is unmanaged, so it doesn’t support enumerators. As you can see from the
source listing, the device instance data includes information such as the device name, its instance name, a
type, and the GUIDs used to identify the device. Figure 15.14 shows the initial screen with the device
enumeration for my system.

Figure 15.14: A typical device enumeration

Now that you know how to enumerate the devices, it’s time to do something with them. Listing 15.3 shows
the method used to list the mouse status. The keyboard status information is gathered in the same way, so the
listing doesn’t show this code.

Listing 15.3: Displaying the Mouse Status

private void btnMouseData_Click(object sender, System.EventArgs e)
{
 DIMOUSESTATE2 State; // DirectInput device state.

 // Make sure the DirectInput 8 Device is empty.
 if (DID8 != null)
 DID8 = null;

 // Get the device information.
 CreateInputDevice("Mouse");

 // Get and display the device data.
 State = new DIMOUSESTATE2();
 try
 {
 DID8.GetDeviceStateMouse2(ref State);
 }
 catch (FileNotFoundException FNFE)
 {
 MessageBox.Show("Message: " + FNFE.Message +
 "\r\nSource: " + FNFE.Source +
 "\r\nTarget Site: " + FNFE.TargetSite +

A Simple DirectInput Example

355

 "\r\nStack Trace: " + FNFE.StackTrace,
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

 // Display the status information.
 MessageBox.Show("Buttons: " + State.Buttons.ToString() +
 "X Axis: " + State.lX.ToString() +
 "\r\nY Axis: " + State.lY.ToString() +
 "\r\nZ Axis (Wheel): " + State.lZ.ToString(),
 "Mouse Information",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
}

private DirectInputDevice8 DID8; // DirectInput 8 device

private void CreateInputDevice(String DeviceName)
{
 String StrGuid; // String version of GUID.
 DirectInputEnumDevices8 Devs; // DirectInput enumeration.
 DirectInputDeviceInstance8 DevInst; // A single device instance.

 // Create a list of devices for this machine.
 Devs = DI8.GetDIDevices(CONST_DI8DEVICETYPE.DI8DEVCLASS_ALL,
 CONST_DIENUMDEVICESFLAGS.DIEDFL_ATTACHEDONLY);

 // Search for the correct GUID. Remember to start the
 // Counter at 1 for VB.
 StrGuid = "";
 for (int Counter = 1; Counter <= Devs.GetCount(); Counter++)
 {
 // Get a device instance.
 DevInst = Devs.GetItem(Counter);

 if (DevInst.GetProductName().ToUpper() == DeviceName.ToUpper())
 {
 StrGuid = DevInst.GetGuidInstance();
 break;
 }
 }

 // Verify we’ve found a GUID.
 if (StrGuid == "")
 {
 MessageBox.Show("Device Not Found",
 "Application Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

 // Create the DirectInputDevice.
 DID8 = DI8.CreateDevice(StrGuid);
 DID8.SetCooperativeLevel(this.Handle.ToInt32(),
 CONST_DISCLFLAGS.DISCL_NONEXCLUSIVE |
 CONST_DISCLFLAGS.DISCL_BACKGROUND);

}

A Simple DirectInput Example

356

As you can see, determining the device status is a two−step process. The first step is to obtain the
device−independent information. The CreateInputDevice() method performs this task. The code passes this
function a string that describes the device, and the function creates a DirectInputDevice8 object for it. The
second step is to fill a device−specific data structure with information about the device.

The btnMouseData_Click() method begins by calling the CreateInputDevice() method with a "Mouse" string.
When the CreateInputDevice() method returns, the btnMouseData_Click() method can use the
GetDeviceStateMouse2() method to fill the DIMOUSESTATE2 data structure, State, with mouse−specific
information. You must place the call to GetDeviceStateMouse2() in a try…catch statement because this
method call can fail for a number of reasons. The code ends by displaying the current mouse data.

When you look at the CreateInputDevice() method code, you’ll notice that it begins with an enumeration
similar to the one we used earlier. In this case, the code looks for a specific string within the enumeration.
When the code finds this string, it places the associated instance GUID into StrGuid using the
GetGuidInstance() method. The GUID you use is important because it determines which device DirectInput
will create for you.

The CreateDevice() method creates the DirectInputDevice8 object. You must set the cooperative level to one
of the recognized combinations before doing anything else with the object. The best combination for
determining the device status is CONST_DISCLFLAGS.DISCL_NONEXCLUSIVE or−ed with
CONST_DISCLFLAGS.DISCL_BACKGROUND.

Using the DirectX Texture Tool

If a development team were to create every aspect of the art that goes into many applications today, it would
take substantially longer to create them. The race to create a better way to draw computer images began
almost as soon as there were computers that could display graphical data. The earliest computers came with
nothing more than ways to position a cursor and draw a dot. The next generation of computers came with a set
of functions that created graphics primitives that a developer could use to speed the drawing of common
graphic elements. These graphics primitives improved over the years, and we have substantial drawing
libraries today. The ability to create textures to place within areas of an image represents a new twist to an
ongoing struggle. The DirectX Texture Tool is a utility that helps the developer create textures to use in
drawings.

This isn’t a drawing tool. You need to create the texture as a separate file. The DirectX Texture Tool prepares
the drawing you create for use as a texture. A texture map uses the DXT compression format. The blit
functions provided with DirectX can also create these texture maps, but it’s often easier to create them in
advance.

When you initially start the DirectX Texture Tool, you’ll see a blank display. Click the New Texture button
and you’ll see the New Texture dialog box shown in Figure 15.15.

Using the DirectX Texture Tool

357

Figure 15.15: The DirectX Texture Tool defines images by texture type, size, and color depth.

As you can see, there are several settings that you must make before you can create a texture map. The first
setting is the type of texture map you want to create. The following list tells you about the options:

Standard Texture A standard texture is one in which there’s one texture and possibly one alpha (opacity)
file.

Cubemap Texture The cubemap texture consists of multiple textures, each of which is placed on specific
axes of the texture map.

Volume Texture The volume texture uses 3D collections of pixels (known as texels) to paint 2D
representations of 3D objects such as cones and spheres.

The Dimensions group includes the width and height of the texture map. The width and height normally
matches the width and height of the images you want to use. The MipMap Levels field determines the number
of levels of texture maps within the file. Each level uses a lower resolution than the one before it. This helps
in situations where the user display might not support the desired resolution, the image is in the distance (and
therefore doesn’t require high resolution), or the designer is trying to create a special effect. The Volume
Depth setting is only used with volume texture maps. This value represents the z−axis of the texel.

The Surface/Volume Format options determine the color depth of your texture map, including the alpha
(opacity) value. These settings are based on the number of bits used for each color setting. An 8×8×8 setting
uses 32−bit color. Notice that there are some settings that don’t include the alpha setting and others that are
based on standard texture compression formats.

Once you decide on a format for your texture map, you’ll need to import the graphic. This task is relatively
easy when working with a standard texture. All you need to do is use the File Ø Open Onto This Surface
command to display the Open dialog box. Select the texture you want to import (any DDS, BMP, JPG, TGA,
PNG, or DIB file) and then click Open.

If you’re working with other formats, you’ll need to make some selections first. For example, when working
with a cube texture, you need to select the cube face using the options on the View Ø Cube Map Face menu.
After you select the cube face, add an image to it using the File Ø Open Onto This Surface command.

Using the DirectX Texture Tool

358

Likewise, if you chose to include several mipmap levels in your texture map, you’ll need to use the View Ø
Smaller Mip Level or the View Ø Larger Mip Level command to choose the correct mipmap level before you
import the image.

Remember that this is a data conversion tool, so there isn’t much in the way of special features. You can zoom
in and out by using the plus and minus keys. The Page Up and Page Down keys help you select a mipmap
level. The Format menu has most of the tools on it. Look at this menu and you’ll see that you can convert a
standard texture map into either a cube or volume texture map. The program will also create additional
mipmap levels for you based on the content of the current image. Finally, you can change the surface format if
you’ve made a mistake. When you complete the data conversion tasks for the texture map, save it to disk
using the File Ø Save command. (You’ll find a sample texture and texture map file in the \Chapter
15\TextureTool folder of the CD.)

Where Do You Go from Here?

This chapter has told you several new things about DirectX. You now know the major differences between
DirectX 7 and DirectX 8.1. The chapter has also shown you how to use several more of the assortment of
tools that the DirectX SDK provides. Finally, we’ve discussed some of the problems you’ll experience using
DirectX in the managed environment through several application programs. While this chapter hasn’t made
you a DirectX expert, you do know enough to create simple programs in the managed environment, which is
something that many developers have discussed on Microsoft’s .NET newsgroups.

The problem now is figuring out where to go from here. You have the basics of working with DirectX in a
managed environment, but you don’t know some of the advanced techniques. Now that you know the pitfalls
of working in the managed environment, it’s time to look at online resources, newsgroups, and other books to
learn more. This chapter’s focus is getting you started, but you actually have a long way to go before you can
develop applications that rely on DirectX with any level of proficiency. Use this opportunity to
experiment—you might find that DirectX actually works better in the managed environment than it does in its
native unmanaged environment.

We’ve explored several utility programs in this chapter. However, it’s important to become proficient in their
use if you want to create truly usable DirectX applications. To do this, try using them for some other sample
tasks. For example, you may want to check the other DMOs. Testing other DMOs will help you learn both
DMO Test and GraphEdit because other DMOs will require other types of test files.

To help you along with the goal of building proficiency with DirectX in the managed environment, Chapter
16 is going to look at some more advanced examples. You still won’t be able to create the graphics for the
next animated movie that Hollywood produces, but this chapter will take you one step closer to realizing your
objective of developing great applications in DirectX. We’ll also look at a few more of the utilities provided
with the DirectX SDK. These tools, like the examples, are a little more advanced, so they’ll fit right in with
our other goals.

Where Do You Go from Here?

359

Chapter 16: Extended DirectX Programming
Examples

Overview

We’ve spent a lot of time looking at what DirectX can do and how to make it perform tasks within the
managed environment. This chapter helps you put together all of the skills you’ve learned so far to create
more complex applications. We’ll also begin using some of the extended features that DirectX can provide.

The chapter will combine tools with examples. There are three tools that we’ll explore: the GraphEdit utility,
DirectPlay Network Simulator, and the MeshView Tool. You’ll learn about each tool first and then see an
example of how to use it with your code. This is perhaps the best way to demonstrate the extended capabilities
of DirectX 8.1.

Note As with the other DirectX chapters in this book, the goal of this chapter is to help you understand the
extended features that DirectX provides for use within the managed environment. Our discussion of the
tools will provide you with an overview of their capabilities—there’s still more to learn about them. The
examples aren’t meant to make you a DirectX programming wizard, nor are they meant to show you
every feature of DirectX—that would require another book. The examples will help you understand how
DirectX fits within the managed environment and alerts you to any oddities that you might encounter
making the various interfaces work.

Using the GraphEdit Utility

Working with media is a process—learning to work with media is not something that happens all at once or
even as part of a short procedure. The GraphEdit utility helps you match data sources, data parsers, filters, and
outputs. We discussed one use for the GraphEdit utility in the creation of test files in the section titled
“Creating a Test File Using GraphEdit” in Chapter 15. In that case, we created a special sequence of a WAV
file, a wave parser, the reverberation filter, and a special output device for creating test files. That’s just one of
a myriad of uses for the GraphEdit utility.

In the following sections, we’ll look at the GraphEdit utility in some detail because it’s one of the more
important tools in the DirectX SDK. Not only can you use it in standalone mode, you can use it with other
applications (as we already have in Chapter 15). In addition, we’ll discuss some of the special features of this
product and how you’d combine them to gain access to some types of media functionality. Of course, in the
interim, we’ll discuss the main purpose of this tool—a means for testing various object combinations before
you place them in your code. You’ll find the sample files used in this section in the \Chapter 16\GraphEdit
folder of the CD.

Creating a Connection

The process of building a file with the GraphEdit utility is called rendering. That’s why you don’t open a
WAV file; you render it using the File Ø Render Media File command. Of course, if the data source you want
to use is on the Internet, you can always use the File Ø Render URL command. Unlike rendering a local file,
however, rendering a file on the Internet means waiting for it to download and knowing the precise URL
(there’s no browse function).

360

Another way to render a media file is to connect to it remotely. You add a Running Object Table (ROT) entry
to your application for the filter that you want to monitor. Run the application. Use the File Ø Connect to
Remote Graph option to create a connection between the GraphEdit utility and your application. The
GraphEdit utility now becomes part modeling tool, part monitor, and part debugger. Unfortunately, this option
doesn’t work with Microsoft’s Media Player because it doesn’t include the requisite ROT entry for
performance reasons (keeping the ROT entry out tends to make the application slightly more secure, as well,
because a third party can’t monitor what’s going on inside).

The GraphEdit utility also points to two potential problems for managed environment developers. The first is
that you’re reliant on unmanaged code to create the connection in the first place. We’ve already dealt with the
problem for a significant portion of the book, so I won’t discuss the ramifications again here. The second
problem, creating a ROT entry, is the one that you do need to address from a fresh perspective.

Creating a ROT entry means calling a Win32 API function, so you’ll need to use PInvoke and COM
interoperability as a minimum to get around the problem. It turns out that ROT functionality actually appears
in the Win32 API as the IRunningObjectTable interface. You need to use the Register() method to add your
application to the list. To verify that your application actually made it to the ROT table, you need to check for
it using the IROTVIEW Windows Application located in the \Program Files\Microsoft Visual
Studio.NET\Common7\Tools\Bin folder of your hard drive. Figure 16.1 shows the output of this application.
Note that most applications are listed by their GUID, not by a human−readable name. You can modify this
behavior by providing a moniker as one of the Register() method parameters.

However, in this case, many developers who’ve tried to work with DirectX in the managed environment say
that writing a wrapper DLL is your best choice because it gets around several DirectX problems as well. As
we’ve seen in past chapters, some areas of DirectX simply don’t behave well even if you rely on the COM
interoperability features for Visual Studio .NET. In short, if you need to use the GraphEdit utility to monitor
or debug your application through a remote connection that relies on a ROT entry, try using a wrapper DLL to
perform the task.

Figure 16.1: Use the IROTVIEW Windows Application to verify that your application is properly registered.

Working with Multiple Streams

Media works with the concept of streams. Some files, such as WAV files, include just one stream, so viewing
them is straightforward—as we saw in Chapter 15. Other types of media include multiple streams. For
example, a movie file will contain a minimum of two media streams: one for video and a second for audio, as

Working with Multiple Streams

361

shown in Figure 16.2. The file will contain two output connectors, and each stream follows a course to a
combined or a separate output device. In the case of a movie file with two streams, the output devices are
obviously separate.

Figure 16.2: Many media files contain two or more data streams, each of which requires separate processing.

If you compare this figure with a typical WAV file rendering such as the one shown in Figure 16.3, you’ll
notice an interesting difference. The WAV file requires a single decompression (parsing) step, while the
multiple stream ASF (movie) file requires two steps. In fact, multiple stream files can require more than two
processing steps per stream in order to separate and decompress the data.

Figure 16.3: Single−stream WAV files require less processing than multiple−stream ASF files.

The splitting of the multiple data streams requires some management functionality in the form of an Audio
Compression Manager (ACM) and an Image Color Manager (ICM). The managers do more than sort through
the information looking for the right type of data; they also help regulate data flow and manage data
synchronization.

Each of these managers feeds its output into some type of data parser. The parser could have any of a number
of names, depending on vendor whims and the actual functionality included within the parser. Both of the
streams in Figure 16.4 rely on decoders from the Windows Media Player. However, the player doesn’t
necessarily support older formats.

Figure 16.4 shows a file in an older format. Notice that the same two managers separate and synchronize the
data streams. However, in this case, the video stream is parsed using the Microsoft MPEG−4 Video
Decompressor, which is an older technology employed by previous versions of Windows. The point is that
we’ve now looked at two ways of rendering the video stream and there are still other methods. The filters you
choose to render a video stream modify the way the system interprets it and finally presents it to the end user.

What are the lessons learned for the managed environment from this section? The first, and most important,
lesson is that you can run into situations in which a managed adaptation will work fine with one file type but
not another. The unmanaged environment has an advantage in easier access to filters. Managed applications
will need to control the file types selected by users with greater care and ensure that the selected filters will
actually work from the managed environment. If you need to access a large number of file types, it might be
easier to write a wrapper DLL to perform many (if not most) processing tasks.

Working with Multiple Streams

362

The second lesson is that the performance issues that plague managed applications when working with a
single stream will become progressively worse when working with multiple streams. Not only do you have
more filters to consider, but there are also multiple streams of data to manage. Many developers who’ve tried
to work with multiple−stream files have noted synchronization problems between the data streams. It’s
difficult to muster the processing power required to keep all of the data streams in synchronization because of
the number of layers the data must traverse.

Figure 16.4: Data management is separate from data parsing in all multimedia files.

Working with Filters

We saw in Chapter 15 that you can add filters to a data stream to modify the output in some way. In that
chapter, we added a reverberation filter to an audio stream in order to test the filter using the DMO Test
utility. However, that chapter focused on the filter as a black box, and there really is more to filters than that.
Generally, you’ll find that filters not only add some type of functionality to data stream processing, they also
add some level of control to the effect that the filter produces. In some cases, the control added by the filter is
actually more than the associated Windows controls would lead you to believe.

Tip Microsoft provides a lot of information about working with CODECs and filters—most of it
incomprehensible unless you already know something about them. Fortunately, there’s a basic
article entitled “CODECs 101 for Microsoft Windows Media Technologies” that tells about
working with these low−level components. You can find this article at
http://msdn.microsoft.com/library/default.asp?url=/library/en−us/dnwmt/html/codecs.asp. This
article explains the essentials of CODECs, tells about the codecs provided with Windows and
DirectX, and includes limited usage information.

Look again at the processing stream presented in Figure 16.2. Each of the blocks in that diagram is a filter,
and every filter has settings that you can control. For example, consider the Windows Media Audio Decoder
filter. Figure 16.5 shows that this filter includes an equalizer that you can use to polish the sound. Of course,
GraphEdit helps you judge the result of changes to the filter properties used to modify a data stream by
playing the new configuration immediately. This interactive filtering experience helps a developer create
applications with better sound, even if the original sound source is found lacking.

Working with Filters

363

Figure 16.5: The Windows Media Audio Decoder filter can help you polish the sound output of an audio
stream.

Notice that this dialog box also provides you with information about the input to and output from the filter on
separate tabs. In most cases, these tabs don’t contain any configurable settings, but they do contain
information about the connection. The connection information can be extremely helpful to developers
attempting to re−create a series of connections programmatically. For the managed developer, the information
can also prove helpful in troubleshooting connections. As we’ve seen in several sections of the DirectX
portion of this book, working with DirectX in the managed environment is hardly straightforward because of
the changes required to make DirectX work.

Tip The GraphEdit toolbar includes several filter−oriented buttons to speed your use of the application. The
Insert Filters button displays the Which Filters Do You Want to Insert dialog box. Use the entries in this
dialog box to add new filters to the display. The Disconnect All Pins button removes the connections
between all of the filters. This option makes it easier to add new filters to the display and then create the
required connections later. Finally, the Refresh button repaints all of the filters on the display. This feature
helps ensure that any changes you make to the filter settings actually appear on the display.

A data stream is stored in files, manipulated by filters, and then output to a device for presentation. Without an
output device, there’s no reason to perform any other part of the data manipulation. The final filter in a data
stream is less of a presentation of the device’s capabilities than it is a view of how the data stream sees the
device. In addition, some device filters include data stream–specific adjustments, as shown in Figure 16.6.

Working with Filters

364

Figure 16.6: Device filters view the device from the data stream perspective.

As you can see, the settings affect the filter, not the device itself. The device settings are still under user
control. Figure 16.6 shows the settings in their default state, which means that the filter doesn’t change these
settings from the user configuration. The other tabs in this dialog box describe the data stream view of the
device. However, many of the statistics aren’t available until after you play the data stream. For example, the
entries on the Quality tab remain at 0 until DirectX has determined the actual quality achieved using this data
stream. Quality can’t be judged until the data stream is played because each set of filters affects performance
in a different way. This leads us to the discussion found in the next section— performance tuning.

Performance Tuning

The GraphEdit utility can do more than simply help you select and configure filters (along with creating
debugging information for them). It can also help you consider the performance aspects of your
application—an important consideration in a managed environment where every performance setting is
important. For example, consider the TimeGoesOn.WMV file filter shown in Figure 16.2. You might not
think that a simple file filter could contain much of interest for performance tuning, but it does. Figure 16.7
shows that this filter contains a buffer setting. Using a higher setting ensures that playback runs smoothly, but
at the cost of memory. You need to consider the cost of the memory against the performance benefit. In some
cases, the tuning process might involve checking performance on several machine categories to ensure that the
buffer size is optimal.

Figure 16.7: Even a file filter has settings that you can use to tune the performance of a data stream.

Sometimes a performance tuning opportunity isn’t obvious. Look again at Figure 16.7 and you’ll notice that it
includes the option to select protocols for the file. Each of these protocols requires memory and also uses
some number of processing cycles. If you remove unneeded protocols from the list, you can free memory for
use in buffers as well as a few processing cycles. This small change could make the difference between a file
that plays smoothly and one that has the jitters.

GraphEdit helps you measure the effects of performance tuning in several ways. The most important method

Performance Tuning

365

is using your own ears and eyes. You can usually see or hear the same differences that the user will see or
hear. However, sometimes a change is more difficult to quantify, and that’s when you need a second
GraphEdit feature.

Each of the filters in a data stream can include performance data. In fact, the output filter usually does include
performance data. This performance data can help you determine if a particular change is worthwhile. For
example, you might want to improve the frame rate for a video data stream. Checking the Quality tab of the
output filter will normally tell you if a performance change in a downstream filter improves the frame rate.
You can also check for issues such as the error rate experienced by the output filter. In some cases, these
statistics point out flaws in an otherwise good setup.

Saving the Result

One way to save your GraphEdit design is as a GRF file. In fact, you’ll find GRF files for the two examples in
this chapter in the \Chapter 16\GraphEdit folder of the CD. However, for developers of managed applications,
there’s a more exciting alternative in the form of XML output. To select this option, simply use the File Ø
Save as XML option instead of the normal File Ø Save option.

The .NET development environment actually provides a significant advantage when using XML output
because it provides extremely good XML data handling. Figure 16.8 shows an XML Notepad view of the
data. Notice that every filter appears in the list, along with every connection used by the filters. In addition,
every setting you make within the filters is also stored within the XML hierarchy. In other words, GraphEdit
becomes a significant time−saver for managed environment developers who need to access DirectX without a
lot of trial and error. You know the data stream works because you’ve already tested it.

Figure 16.8: XML Notepad shows that you can save all of your GraphEdit data in XML format.

All that a .NET developer need do to make use of the output of GraphEdit is import the XGR file containing
the XML version of the GraphEdit data. Once imported, the file provides everything the developer needs to
re−create a data stream configured within GraphEdit. This technique greatly reduces the chance for errors in
configuring a DirectX data stream within the managed environment.

Note XML is almost, but not quite, readable by the average human. Reading simple files is almost a trivial
exercise, but once the data gets nested a few layers deep, reading it can become tiresome. That’s
why you should have a tool for reading XML in your developer toolkit. The only problem is that
some of these tools cost quite a bit for the occasional user. Microsoft has remedied this problem a

Saving the Result

366

little with the introduction of XML Notepad
(http://msdn.microsoft.com/library/default.asp?url=/library/en−us/dnxml/html/xmlpaddownload.asp).
This utility is free for the price of a download and does a reasonable job of reading most XML files.
(Microsoft hasn’t bothered to update the date for this site, but be assured that XML Notepad runs
fine under both Windows 2000 and Windows XP.)

Using the DirectPlay Network Simulator

The main use for DirectPlay today is games. Two people who want to play a game together (either as allies or
enemies) make a connection between their computers. The copies of the games on both computers
synchronize so that the two players can see each other. Of course, the technology works for more than two
players, but the principle is the same no matter how many players you add. The two major considerations are
the number of players that a developer thinks the game should support and the availability of resources such
as memory and network bandwidth to support the player data.

Tip There are situations in which an application crash can leave DirectX in an unstable state. One of
the most common causes of problems in Windows 9x occurs when the DDHelp process remains
active after an application using DirectX crashes. The active process prevents the application
from restarting and prevents any other applications that rely on DirectX from starting. A
developer can resolve this problem by running the Kill Help utility. Most .NET developers will
never need to use the Kill Help utility, but it helps to know that it exists. This utility doesn’t
display any text on screen, any prompts, or even a success message, but it does stop the DDHelp
process from running so that the developer doesn’t have to reboot the text system.

In the future, developers will likely use DirectPlay for other purposes. For example, a developer could create a
modeling application that allows interaction by more than one person. DirectPlay would help two or more
people interact with the modeling program in a way that all of the participants could see. In some respects, the
application would work just as a game does today, but it would use real data in a real−world scenario. The
technique is essentially the same.

No matter what type of application you create to use DirectPlay, the need to test the network connection
between participants is important. However, you can’t always tell how the participants will create a
connection when you design the application. A game player might decide to create a connection to a friend
across a dial−up connection rather than use a standard network. So you must also test the connection using
various connection types and speeds. The DirectPlay8 Network Simulator shown in Figure 16.9 offers such
choices.

Using the DirectPlay Network Simulator

367

Figure 16.9: The DirectPlay8 Network Simulator creates specific test conditions for an application.

As you can see from Figure 16.9, the application begins in the Off position. You can start the application by
selecting a network connection type and speed in the Settings field. Figure 16.10 shows the choice of settings
available. Notice especially the Custom setting, which helps you create your own test settings.

Figure 16.10: You can use the standard or custom settings for test purposes.

When you select a particular entry in the Settings field, the DirectPlay8 Network Simulator automatically fills
in the values required in the Send and Receive groups. You can tweak these settings as needed to define
specific network connections. The moment you change one of the fields in either group, however, the
DirectPlay8 Network Simulator selects the Custom entry in the Settings field. Note that a change you make
won’t take effect until you click Apply. Clicking Revert automatically changes the settings back to the
previous values.

The Statistics group that makes up the bottom half of the dialog box tells you how well an application
performs given the settings that you’ve chosen. You can use these statistics to determine when an application

Using the DirectPlay Network Simulator

368

is operating at less than peak performance. In some cases, modifying an application slightly will improve the
performance. However, it all comes down to the amount of data you need to transmit between two copies of
an application. The DirectPlay8 Network Simulator can also help you determine the minimum bandwidth
requirements for the application. Publishing these statistics ensures that the user’s experience will always
match what you’ve simulated in the testing environment.

Using the MeshView Tool

A mesh is a description of a 3D object. The description relies on a series of triangles that are expressed using
vertices (the angles in the object) and faces (the flat surfaces). The mesh also includes ancillary information in
the form of materials and textures that determine how DirectDraw will skin the 3D object. All of this
information is stored in memory when used to draw an image on screen. The information can also appear in
an X or an M file for permanent storage. (You’ll find the X files used for this section in the \Chapter
16\MeshView folder of the CD.) The MeshView Tool performs five essential tasks in relation to these files
and the meshes they describe:

Open and view existing mesh files•
Create new meshes based on graphics primitives•
Convert meshes to progressive meshes•
View the animations contained within mesh files•
Manipulate mesh and progressive mesh data, but not content•

Note The MeshView Tool is a complex utility from both a usage and conceptual perspective. This section
tells you about some of the basics of the tool, but it doesn’t delve into the intricacies of using it. For
example, we won’t discuss the animation feature. The point of this section is to discuss how the tool
works and then show how you can use it for managed applications.

One of the most important features of the MeshView Tool for the managed environment developer isn’t even
on this list. The MeshView Tool can validate the output of your application. Simply output the data you’ve
created to an X file. If the MeshView Tool can read the file, then you know the file is essentially correct. You
can further validate the mesh using the MeshOps Ø Validate Mesh command. This command only becomes
available after you choose one of the selection tools (such as Vertex Selection) and rotate the object.

Another important reason to use the MeshView Tool is to gain an understanding of how meshes work. To do
this, you’ll need to create a simple image, change it, and view the effects. In fact, the following sections will
take you through the process of creating a mesh, adding color to it, and then distorting it. This set of tasks will
help you understand meshes better, teach you to use the MeshView Tool, and help you learn about the various
elements of an X file so you can sight−validate the output of your managed application.

Creating a Mesh

The MeshView Tool comes with a variety of built−in graphics primitives. We aren’t going to create a fancy
image in this example. In fact, starting simply is the best way to go because the math for complex images can
quickly make even simple manipulations too difficult. The example will begin with a simple cube. The
following steps will show you how to create, view, and save the cube mesh:

Use the File Ø Create Shape Ø Create Box command. Notice that you can create a variety of other
shapes including a sphere, torus, and even a teapot. Of course, these are simply primitives for
experimentation—a real application would likely use more complex shapes.

1.

Using the MeshView Tool

369

Click the Edge Mode button on the toolbar. This button displays the edges of the triangles used to
create the cube. You don’t have to perform this step to save the file, but it’s important to see how the
cube is constructed before we add color to it. Notice that each face consists of two triangles. This
information will become important in the sections that follow.

2.

Rotate the image by dragging one of the faces. Figure 16.11 shows what you might see at this stage.
(The figure also contains labels so you know the name of each button since the utility doesn’t provide
balloon help to identify them.) Notice that the shading of each face changes as you move the cube.
This shading is automatic—you don’t add it as part of the X file data. Each triangle used to create the
cube has separate color and texture information—an important feature when you create oddly formed
shapes as we will later in this section.

Figure 16.11: The MeshView Tool provides features that help you look at a 3D object from all sides.

3.

Use the File Ø Save As command to display the Save As dialog box.4.
Verify that the Save Hierarchy check box is checked. Select Text for the X File Format option.5.
Type a name for the file. The name of the file in this example is Box1.X. Make sure you type the file
extension because the utility won’t add it for you.

6.

Click Save. You now have a text file containing the settings for a basic cube. If you opened this X file
using the File Ø Open Mesh File command, you’d see the same cube that we just created.

7.

Adding Color

It’s fortunate that you can store the mesh data in a text file because that means you can experiment with the
data using an application that you know works at the outset. Any modifications you make to a test file are
easily checked using the MeshView Tool before you attempt to create your own application for manipulating
the file. Of course, file modifications require knowledge of the file format. This section isn’t going to tell you
about the format of an X file in detail, but we are going to look at one specific area—the use of materials in an
X file.

Adding Color

370

Tip The Box1.X file is going to be a challenge to view in Notepad because Notepad
lacks the features to interpret a carriage return without a linefeed correctly. You
can certainly attempt to use Notepad to modify the X file produced by the
MeshView Tool, but easier−to−use alternatives exist. One product that you should
try is Notepad+. This utility produces plain−text files, just as Notepad will, but it
includes a wealth of additional features that make the developer’s life easier. You
can download Notepad+ at http://www.mypeecee.org/rogsoft/.

The data storage in an X file looks very much like a C data structure with a few bits and pieces of information
added. Figure 16.12 shows the Box1.X file we created earlier.

Figure 16.12: The text form of the X file looks just like C data structure code.

The part that we’re actually interested in changing appears in the Frame data structure. The X file currently
holds a single material that defines the color of all of the faces. Here’s what the code looks like.

MeshMaterialList {
1;
12;
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0;

 Material {
 0.500000;0.500000;0.500000;0.000000;;
 0.000000;
 0.500000;0.500000;0.500000;;
 0.000000;0.000000;0.000000;;
 }
}

Adding Color

371

The first number in the MeshMaterialList data structure determines the number of materials in the list and the
second number determines the number of faces. The numbers that follow contain the number of the materials
to use to display the individual triangles used to create a face. There are 6 sides to a cube and 2 triangles used
to create each of the sides, so the structure contains a total of 12 faces.

The Material data structure contains a series of numbers. The numbers we’re most interested in are the first
four. They reflect the initial color of the material in red, green, blue, and alpha blending level (the amount of
transparency that a pixel has). The four sets of numbers determine the face color, power level, specular color,
and emissive color. You can learn more about the various color values in the article entitled "Mathematics of
Lighting" at
ms−help://MS.VSCC/MS.MSDNVS/dx8_vb/directx_vb/Graphics/ProgrammersGuide/UsingDirect3D/LightsAndMaterials/MathematicsOfLights/MathematicsOfLights.htm.

Let’s say that you want each face of the cube to have a different color. The first task you need to perform is to
define additional materials and remove the current material. A material definition should appear at the
beginning of the Frame data structure before the Mesh data structure. The Material data structure requires a
name so you can reference it later. Here’s a typical Material definition for a face color (you can see the entire
list of six colors in the Box2.X file):

Material RedMaterial {
1.000000;0.000000;0.000000;1.000000;;
0.000000;
0.000000;0.000000;0.000000;;
0.000000;0.000000;0.000000;;
}

As you can see, the first value, red, is set to the highest level possible. You can use any value between 0 and 1
to represent the intensity of any color. It’s helpful to experiment with the other color values once you
understand how the face color works. The other color values help you achieve special effects.

Once you define the required colors, you need to add them to your 3D object by modifying the
MeshMaterialList data structure. The following code shows how you’d make each face of a cube contain a
different color:

MeshMaterialList {
 6;
 12;
 0,
 0,
 1,
 1,
 2,
 2,
 3,
 3,
 4,
 4,
 5,
 5;;

 {RedMaterial}
 {GreenMaterial}
 {BlueMaterial}
 {YellowMaterial}
 {TealMaterial}
 {PurpleMaterial}
}

Adding Color

372

As you can see, the data structure defines 6 materials now. It still has 12 faces and each face pair uses a
different material. Consequently, each face pair (or face of the cube) will have a different color. Load the
Box2.X file into the MeshView Tool and see for yourself how DirectX would render this object.

Making Other Changes

There are a number of other changes you can make to the initial image we created. One such change is to
modify the appearance of the image. To do this, you need to modify the intersection of all of the vertices that
make up a particular picture element. Of course, this means accurately selecting the vertices you need to
change. Click the Face Selection Mode and Vertex Selection Mode buttons to display the highlighted vertex
on screen as shown in Figure 16.13. The selected vertex has a red dot over it, while the selected face is
outlined in yellow.

Figure 16.13: The MeshView Tool makes it easy to accurately select a vertex and face.

Once you select a vertex and face, you can click the Information button to display the dialog shown in Figure
16.14. As you can see, the vertex number for this face is 19. We need two other vertex numbers in order to
change this corner of the figure. It turns out that the other two faces are vertex numbers 2 and 5.

Figure 16.14: This Face Information dialog box tells you about the selected vertex and face combination.

To change the appearance of this corner, you need to change the Mesh data structure information for all three.
The example changes the x− and y−coordinates to 0.300000 as shown in the following listing (you’ll find the
complete listing in the Box4.X file on the CD):

Making Other Changes

373

Mesh {
 24;
 −0.500000;−0.500000;−0.500000;,
 −0.500000;−0.500000;0.500000;,
 0.300000;0.300000;0.500000;,
 −0.500000;0.500000;−0.500000;,
 −0.500000;0.500000;−0.500000;,
 0.300000;0.300000;0.500000;,
 0.500000;0.500000;0.500000;,
 0.500000;0.500000;−0.500000;,
 0.500000;0.500000;−0.500000;,
 0.500000;0.500000;0.500000;,
 0.500000;−0.500000;0.500000;,
 0.500000;−0.500000;−0.500000;,
 −0.500000;−0.500000;0.500000;,
 −0.500000;−0.500000;−0.500000;,
 0.500000;−0.500000;−0.500000;,
 0.500000;−0.500000;0.500000;,
 −0.500000;−0.500000;0.500000;,
 0.500000;−0.500000;0.500000;,
 0.500000;0.500000;0.500000;,
 0.300000;0.300000;0.500000;,
 −0.500000;−0.500000;−0.500000;,
 −0.500000;0.500000;−0.500000;,
 0.500000;0.500000;−0.500000;,
 0.500000;−0.500000;−0.500000;;

The vertex numbers begin at 0 and progress to 23. As you can see, we’ve changed the values for vertex
numbers 2, 5, and 19. Figure 16.15 shows the results of the changes.

Figure 16.15: Modifying the three vertices gives the cube a new appearance.

The final change we’ll look at is applying a texture to a cube. In section titled “Using the DirectX Texture
Tool” in Chapter 15, we discussed how you could create a texture for use in a DirectX application. It’s time to
look at one way to apply a texture to an existing X file. The first step is to update the Material data structure
so it contains a texture description in the form of a TextureFilename data structure. Here’s the modification
for the RedMaterial reference (you’ll find the complete source code in the Box4.X file on the CD):

Material RedMaterial {
1.000000;0.000000;0.000000;0.000000;;
0.000000;
0.000000;0.000000;0.000000;;

Making Other Changes

374

1.000000;0.000000;0.000000;;
TextureFilename {"bricks.dds";}
}

The second step is to define how you want the texture to appear on the screen. This means defining a value for
each vertex in the object. To do this, you use the MeshTextureCoords data structure as shown here:

MeshTextureCoords {
 24;
 1.000000;0.000000;
 0.000000;−1.000000;
 −1.000000;0.000000;
 0.000000;−1.000000;
 1.000000;0.000000;
 0.000000;−1.000000;
 −1.000000;0.000000;
 0.000000;−1.000000;
 1.000000;0.000000;
 0.000000;−1.000000;
 −1.000000;0.000000;
 0.000000;−1.000000;
 1.000000;0.000000;
 0.000000;−1.000000;
 −1.000000;0.000000;
 0.000000;−1.000000;
 1.000000;0.000000;
 0.000000;−1.000000;
 −1.000000;0.000000;
 0.000000;−1.000000;
 1.000000;0.000000;
 0.000000;−1.000000;
 −1.000000;0.000000;
 0.000000;−1.000000;
 }

Each entry defines a single vertex in the object. Figure 16.16 shows the results of these changes when applied
to the colored cube. As you can see, the brick texture we created in Chapter 15 takes on the color of each face
and the shape of the cube. The MeshView Tool uses all three of these elements to produce a specific effect on
the original cube.

Figure 16.16: The final output of our sample shows the effects of color and texture on a cube.

Making Other Changes

375

Using a Mesh Example

Now that you’ve seen how a mesh is constructed and how to test the content of an X file, it’s time to see what
you’ve learned in action. The example in this section performs the simple task of loading an X file and
rendering it. The example code will demonstrate that some of the DirectX code is the same as you’ve used in
the past but other code is different because of the managed environment. In fact, this example contains a few
surprises that you might not have expected.

Note A lot of developers were surprised to hear that there are some problems getting DirectX to run on some
machines that have AMD processors installed. It turns out that the DrawIndexedPrimitive() function can
cause DirectX to stop responding on these machines. This problem was first reported in The Inquirer
(http://www.theinquirer.net/?article=4474). Later, Microsoft uploaded a Knowledge Base article to
explain the problem (http://support.microsoft.com/search/preview.aspx?scid=kb;en−us;Q321178). The
Knowledge Base article also includes a link where you can download a patch to fix this problem.

Initializing the Application

Let’s begin with application initialization. Listing 16.1 contains the constructor for the form. You’ll find this
code in the \Chapter 16\C#\MeshView and \Chapter 16\VB\MeshView folders of the CD.

Listing 16.1: Mesh Example Initialization

// DirectX objects.
private DirectX8 DX8; // DirectX 8 object.
private Direct3D8 D3D8; // Direct 3D object.
private Direct3DDevice8 Device; // Display device.

public frmMain()
{
 D3DDISPLAYMODE Mode; // Display mode.
 D3DPRESENT_PARAMETERS Params; // Display parameters.

 // Required for Windows Form Designer support
 InitializeComponent();

 // Initialize the DirectX objects.
 DX8 = new DirectX8Class();
 D3D8 = DX8.Direct3DCreate();

 // Create a device to use for drawing. Begin by obtaining the
 // current display mode. Set the display parameters. Finally,
 // create the device.
 Mode = new D3DDISPLAYMODE();
 D3D8.GetAdapterDisplayMode((int)CONST_D3DCONST.D3DADAPTER_DEFAULT,
 ref Mode);
 Params = new D3DPRESENT_PARAMETERS();
 Params.Windowed = 1;
 Params.SwapEffect = CONST_D3DSWAPEFFECT.D3DSWAPEFFECT_COPY_VSYNC;
 Params.BackBufferFormat = Mode.Format;
 Params.BackBufferCount = 1;
 Params.EnableAutoDepthStencil = 1;
 Params.AutoDepthStencilFormat = CONST_D3DFORMAT.D3DFMT_D16;
 Device = D3D8.CreateDevice(
 (int)CONST_D3DCONST.D3DADAPTER_DEFAULT,
 CONST_D3DDEVTYPE.D3DDEVTYPE_HAL,
 pnlDisplay.Handle.ToInt32(),

Using a Mesh Example

376

 CONST_D3DCREATEFLAGS.D3DCREATE_SOFTWARE_VERTEXPROCESSING,
 ref Params);

 // Set the device state.
 // Turn off culling.
 Device.SetRenderState(CONST_D3DRENDERSTATETYPE.D3DRS_CULLMODE,
 (int)CONST_D3DCULL.D3DCULL_NONE);
 // Turn on the Z buffer.
 Device.SetRenderState(CONST_D3DRENDERSTATETYPE.D3DRS_ZENABLE, 1);
 // Turn on lighting.
 //Device.SetRenderState(CONST_D3DRENDERSTATETYPE.D3DRS_LIGHTING, 0);
 // Set the ambient lighting color.
 Device.SetRenderState(CONST_D3DRENDERSTATETYPE.D3DRS_AMBIENT,
 −1);

}

The example begins like many of the DirectX examples so far: by creating the DirectX and Direct3D objects.
Working with a mesh also means creating a device—essentially a virtual display adapter and monitor
combination on which you display the data. To create a device, the code needs to obtain the real display
information using the GetAdapterDisplayMode() method. Once the code has this information, it can fill out a
D3DPRESENT_PARAMETERS data structure (Params) that contains the information used to create the
device. The Direct3D parameters control the operations the device can perform.

The code uses the D3D8.CreateDevice() method to create the device. This method accepts the parameters, a
device type, the handle to the current window, and some creation flags as input. We’ll use a default adapter
type for the example. In addition, the example relies on hardware support. If your system only provides
support for software emulation, you’ll need to change the CONST_D3DDEVTYPE.D3DDEVTYPE_HAL
enumeration value to CONST_D3DDEVTYPE.D3DDEVTYPE_SW. If the code attempts to create a device
for a system that doesn’t support the request device type, the call will fail, so it’s important to check for a null
return value in your production code and make an alternative device creation call (or exit from the
application).

When the D3D8.CreateDevice() method returns, Device is in a default state that doesn’t work for anything.
Microsoft is assuming that you’ll configure the device for your needs. The final four lines of code configure
Device for the needs of this application by setting the render state using the Device.SetRenderState() method.
The code controls the device setting using the CONST_D3DRENDERSTATETYPE enumeration members.
In this case, the code sets the culling state, Z buffer, lighting, and ambient lighting color. Notice that I’ve
actually commented the ambient color setting out. We’ll see later in this example why this setting can cause
problems or fix them, depending on the situation.

Loading a Mesh File

At this point, the main DirectX objects are set up. However, we can’t do any more until the user opens the
application. Listing 16.2 shows the code to open an X file and process it for use. This code demonstrates the
prerequisites for preparing to render (display) the file, but we won’t display it yet.

Listing 16.2: Loading the X File

// These are the global file−related objects.
private string File2Open; // The file we want to render.
private D3DXMesh Mesh; // The Mesh Object.
private D3DMATERIAL8[] Materials; // Array of materials.

Loading a Mesh File

377

private Direct3DTexture8[] Textures; // Array of textures.

private void mnuFileOpen_Click(object sender, System.EventArgs e)
{
 OpenFileDialog Dlg; // File Open Dialog
 D3DX8 Worker; // A worker object.
 D3DXBuffer Adjacency; // Adjacency data buffer.
 D3DXBuffer MatBuffer; // Materials buffer.
 Int32 MatCount; // Number of materials.
 String TextName; // Name of the texture file.
 String FilePath; // Path to the texture file.

 // Set up the File Open Dialog
 Dlg = new OpenFileDialog();
 Dlg.Filter = "X Format File (*.x)|*.x";
 Dlg.DefaultExt = ".x";
 Dlg.Title = "Open X File Dialog";

 // Display the File Open Dialog and obtain the name of a file and
 // the file information.
 if (Dlg.ShowDialog() == DialogResult.OK)
 {

 // Set the name of the file.
 File2Open = Dlg.FileName;

 // Load the X file.
 Worker = new D3DX8();
 Adjacency = Worker.CreateBuffer(0);
 MatBuffer = Worker.CreateBuffer(0);
 MatCount = 0;
 Mesh = Worker.LoadMeshFromX(File2Open,
 (int)CONST_D3DXMESH.D3DXMESH_MANAGED,
 Device,
 ref Adjacency,
 ref MatBuffer,
 ref MatCount);

 // Obtain a list of materials and textures.
 Materials = new D3DMATERIAL8[MatCount];
 Textures = new Direct3DTexture8[MatCount];
 FilePath = File2Open.Substring(0,
 File2Open.LastIndexOf("\\") + 1);
 for (int Counter = 0; Counter < MatCount; Counter++)
 {
 // Get a material from the buffer.
 Worker.BufferGetMaterial(MatBuffer,
 Counter,
 out Materials[Counter]);

 // Set the material ambient color.
 Materials[Counter].ambient = Materials[Counter].diffuse;

 // Determine if there is a texture to process.
 TextName = Worker.BufferGetTextureName(MatBuffer, Counter);
 if (TextName != null)
 {
 // Obtain the texture.
 Textures[Counter] =
 Worker.CreateTextureFromFile(Device,
 FilePath + TextName);

Loading a Mesh File

378

 }
 }

 // Tell DirectX that we’re done with the materials buffer.
 MatBuffer = null;

 // Render the object.
 Render();

 // Start the timer.
 RenderTimer.Start();

 // Enable the timer setting menu.
 mnuTimerSet.Enabled = true;
 mnuTimerSet.Text = "Stop";
 }
}

The first task the code performs is to create more fields that the entire class can use. Unlike the DirectX
objects the code created earlier, these objects are file specific and enable other parts of the application to
interact with the file. The File2Open variable contains the path and name of the file. You should always create
such a variable because your code is likely to need it. The Mesh variable contains the mesh object, which
includes the display data. The Materials and Textures arrays contain the colors and textures used to render the
image on screen. The last three variables are all that application requires in the form of file objects to render
the image on screen.

The mnuFileOpen_Click() method begins as any file opening code would: by creating the dialog box and
waiting for user input. If Dlg returns DialogResult.OK, the application begins processing the resulting
filename. Otherwise, the application exits to the main form and waits for the user to stop clicking Cancel (or
exit the application).

The code begins by creating an instance of the D3DX8 worker class (Worker). The Worker object provides
access to a wealth of methods that you can use to manipulate graphics files of all types, including mesh files.
The code then creates two temporary buffers, Adjacency and MatBuffer, that the application will use to hold
data from the X file. The LoadMeshFromX() method loads data from the X file that the user selected into the
two buffers and the device. The MatCount variable holds the number of materials retrieved from the X file
and stored in MatBuffer. Device now contains the data required to render the image, but we still need to
perform other tasks on the buffers.

Tip Listing 16.2 contains the Adjacency buffer for the LoadMeshFromX() method even though
the application will never use the data contained within the buffer. C# doesn’t provide a
method to leave out optional parameters, so we’re forced to use this technique to keep the
compiler happy even when the application doesn’t need the data. You can get around the
optional parameter problem, in some cases, by using either the Type.Missing or
Missing.Value value. Of course, other options include using null or IntPtr.Zero as needed.

The next step in the process is to create Materials and Textures arrays. The code sizes these two arrays to hold
the number of items specified by MatCount. Given the way that an X file stores the texture information, the
Textures array will never include more items than the Materials array, so using this technique is safe. The
code uses a for loop for processing. It begins by obtaining the current material from MatBuffer using the
BufferGetMaterial() method. The code must call this method once for each material in the buffer. We’ve set
the device to display the ambient color, so the next step is to transfer the diffuse color value to the ambient

Loading a Mesh File

379

color value in the Materials array.

Getting the texture comes next. The code checks for a texture attached to the current MatBuffer entry using
the BufferGetTextureName() method. If TextName is null on return, then the material doesn’t include a
texture. Otherwise, the code combines the FilePath contents with TextName to create a filename and path. It
uses the CreateTextureFromFile() method to place the texture within the Textures array.

The code has to perform some cleanup at this point. Because we don’t need MatBuffer anymore, the code sets
this object to null. Remember that we’re still working with unmanaged code. You’ll create a memory leak if
you don’t perform this step. The code calls Render() to render the image on screen, starts the timer used to
update the image, and enables the Timer Ø Stop menu item. At this point, the first image is displayed on
screen and the display will receive regular updates.

Displaying the Image On Screen

It’s finally time to discuss the rendering process. Listing 16.3 shows one way to render an image on screen.
This is probably the least−code−intensive method for displaying a rotating image on screen. Once you get past
these basics, the coding can become quite intense because you start working with the mathematics required to
render images precisely.

Listing 16.3: Rendering the Image

// Define the D3DXMatrixRotationY() function.
[DllImport("DX8VB.DLL", CharSet=CharSet.Auto, SetLastError=true,
 EntryPoint="VB_D3DXMatrixRotationY")]
public static extern void D3DXMatrixRotationY(out D3DMATRIX MOut,
 float angle);

// Define the D3DXMatrixLookAtLH() function.
[DllImport("DX8VB.DLL", CharSet=CharSet.Auto, SetLastError=true,
 EntryPoint="VB_D3DXMatrixLookAtLH")]
public static extern void D3DXMatrixLookAtLH(out D3DMATRIX MOut,
 ref D3DVECTOR VEye,
 ref D3DVECTOR VAt,
 ref D3DVECTOR VUp);

// Define the D3DXMatrixPerspectiveFovLH() function.
[DllImport("DX8VB.DLL", CharSet=CharSet.Auto, SetLastError=true,
 EntryPoint="VB_D3DXMatrixPerspectiveFovLH")]
public static extern void D3DXMatrixPerspectiveFovLH(
 out D3DMATRIX MOut,
 float fovy,
 float aspect,
 float zn,
 float zf);

// We need to use pi for some of the values.
public const float pi = 3.1415F;

private void Render()
{
 D3DMATRIX WorldView; // Drawing matrices world view.
 D3DMATRIX Camera; // Drawing matrices camera view.
 D3DMATRIX Projection; // Drawing matrices projection.
 D3DVECTOR Vect1; // Matrix vectors.
 D3DVECTOR Vect2; // Matrix vectors.

Displaying the Image On Screen

380

 D3DVECTOR Vect3; // Matrix vectors.

 // Clear the display area.
 Device.Clear(0,
 IntPtr.Zero,
 CONST_D3DCLEARFLAGS.D3DCLEAR_TARGET |
 CONST_D3DCLEARFLAGS.D3DCLEAR_ZBUFFER,
 0xFFFFFF,
 (float)1.0,
 0);

 // Begin the scene.
 Device.BeginScene();

 // Set up the world view.
 D3DXMatrixRotationY(out WorldView, DateTime.Now.Millisecond);
 Device.SetTransform(CONST_D3DTRANSFORMSTATETYPE.D3DTS_WORLD,
 ref WorldView);

 // Set up the camera view.
 Vect1 = new D3DVECTOR();
 Vect2 = new D3DVECTOR();
 Vect3 = new D3DVECTOR();
 Vect1.x = 0;
 Vect1.y = 3;
 Vect1.z = −5;
 Vect2.x = 0;
 Vect2.y = 0;
 Vect2.z = 0;
 Vect3.x = 0;
 Vect3.y = 1;
 Vect3.z = 0;
 D3DXMatrixLookAtLH(out Camera, ref Vect1, ref Vect2, ref Vect3);
 Device.SetTransform(CONST_D3DTRANSFORMSTATETYPE.D3DTS_VIEW,
 ref Camera);

 // Set up the projection view.
 D3DXMatrixPerspectiveFovLH(out Projection, pi / 4, 1, 1, 1000);
 Device.SetTransform(CONST_D3DTRANSFORMSTATETYPE.D3DTS_PROJECTION,
 ref Projection);

 // Render the mesh. Set the materials and textures, and then draw
 // the mesh subset.
 for (int Counter = 0; Counter < Materials.Length; Counter ++)
 {
 Device.SetMaterial(ref Materials[Counter]);
 Device.SetTexture(0, (Direct3DBaseTexture8)Textures[Counter]);
 Mesh.DrawSubset(Counter);
 }

 // End the scene.
 Device.EndScene();

 // Present the scene on screen.
 Device.Present(IntPtr.Zero, IntPtr.Zero, 0, IntPtr.Zero);
}

Notice that the code begins by using [DllImport] to access some functions in the DX8VB.DLL, which is
surprising considering that this is the same DLL used for the COM library. It turns out that the .NET

Displaying the Image On Screen

381

interoperability layer doesn’t always do a good job of importing everything you need into the IDE. DirectX
provides an extensive math library (among other functions) that’s totally inaccessible because the math
functions aren’t imported.

You should see another surprise in the code at this point. This is the first time we’ve had to use the EntryPoint
property. As shown in Figure 16.17, the function names listed in the DirectX help files don’t match the
function names that actually appear in the DLL. Microsoft had to write a Visual Basic compatibility layer to
make DirectX work properly with this language. Consequently, the developers at Microsoft had to give the
Visual Basic specific functions special names, with the result shown in Figure 16.17. This use of alternative
names is another problem to look out for when working with DLLs, especially those used to support COM.

There’s one additional surprise in this DLL. Notice that the function declarations define MOut as an out value
rather than a ref. In addition, the other arguments are defined as ref values. The reason that this is a surprising
turn of events is that the Visual Basic would lead you to believe that you can pass these arguments by value.
Even the Visual C++ documentation only passes the MOut argument as a pointer (by reference), so there’s
apparently no reason to set the declarations up as we have. This is one of those odd declarations that you
discover by trial and error rather than by observation. Try changing the function calls to the Visual Basic or
Visual C++ documented format and you’ll find that they no longer work properly (or perhaps at all).

Figure 16.17: Exercise care when importing COM libraries because you might leave the functions behind.

It’s time to look at the Render() method. The code begins as you might expect. It clears the display. Make sure
you clear both the target area and the Z buffer as shown in the code or you’ll have unpleasant results (mainly
data corruption). The Clear() method also accepts a background color (white, in this case), the Z buffer depth
(where 1.0 is farthest away and 0.0 is closest), and a stencil buffer setting.

Drawing the image begins by a call to the BeginScene() method. The code then sets various matrices for
display purposes. Notice that this is where we use the math functions declared earlier in Listing 16.3. This
book isn’t about the math behind DirectX, so I’ll leave a complete discussion of the intricacies of matrix code
to someone else. The important issue is that you need to set up a world view, camera view, and projection
view in order to see the image. One item of note is that you need to provide some value in radians for the
D3DXMatrixRotationY() function. The example uses the current time in milliseconds
(DateTime.Now.Millisecond), which produces acceptable results if you synchronize this value with the timer
interval.

After the code sets up the various matrices, it begins to render the image. Direct3D requires that the code

Displaying the Image On Screen

382

render the image on a material−by−material basis. Consequently, the code uses a for loop to process each
material and texture in turn. The application relies on the SetMaterial() and SetTexture() methods to perform
the processing. Once the code has applied the current color and texture, it uses the Mesh.DrawSubset() to
display image components that use that material on screen.

The rendering process ends with two steps. First, the code tells the device that the scene has ended using the
EndScene() method. Second, the Direct3D device presents the rendered image to the real display using the
Present() method. At this point, the user sees the image.

The user experience with Direct3D probably won’t be the same without some form of animation. To add an
animated effect to your display, you need a timer. The example application uses a simple timer to render the
image each time the timer expires, which hopefully produces smooth animation. Here’s the code used to
implement the timer:

private void timer1_Tick(object sender, System.EventArgs e)
{
 // Render the object.
 Render();
}

As with every other DirectX example in the book, you need to perform some cleanup when you complete the
application. Here’s the cleanup code for this example. Notice that we need to verify that the Mesh object
exists. Otherwise, the application could exit with an error:

private void frmMain_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 // Clean up the DirectX objects.
 if (Mesh != null)
 Mesh = null;
 Device = null;
 D3D8 = null;
 DX8 = null;
}

A Few Words about Output

Let’s look at the output of the application as it exists now. Figure 16.18 shows the standard output with color.
Notice that the colors interact with the texture just as they did in the MeshView Tool.

A Few Words about Output

383

Figure 16.18: The standard output from the application allows color and texture to interact.

I mentioned earlier in the section that you need to exercise care in setting up your device. In some cases, you
might discover to your horror that the X file loads and displays but the image lacks color. This normally
occurs because you’ve turned off lighting effects. Likewise, if you add lighting when all you need is a texture,
the image might not appear as anticipated—it might have odd interactions in the texture.

Let’s see an example of a device setup change. Remove the comments from this line of code in Listing 16.1:

Device.SetRenderState(CONST_D3DRENDERSTATETYPE.D3DRS_LIGHTING, 0);

Recompile the code and run it. Load the Box4.X file and your output should look similar to that shown in
Figure 16.19. This is the texture−only version of that X file. If you load any of the other X files that we
created with the MeshView Tool, you’ll notice that they all display without color (you can only see them if
you change the background color of the application).

A Few Words about Output

384

Figure 16.19: A texture−only form of the Box4.X file

The moral behind this particular piece of coding is that you need to verify that your DirectX settings are
correct before you blame the managed environment for some oddity in your code. The fact is that DirectX is
complex even without the vagaries of managed code to worry about—using managed code only adds to the
developer’s burden.

Where Do You Go from Here?

This chapter has shown you how to use three new DirectX tools. You’ve also seen a coding example that
shows how to use the MeshView utility with your application. What you’ve received is a general overview of
the extended capabilities of DirectX—we haven’t really explored the depths of this complex API. You should
leave this chapter knowing that the tools do indeed work, that they reduce the effort required to code certain
types of DirectX applications, and that everything works with the managed environment—at least partially.

At this point, you know that DirectX does provide full functionality in the managed environment as long as
you’re willing to work around some problem areas. From the examples, you should also know that DirectX
doesn’t work nearly as fast in the managed environment as it does in a native executable. Finally, you should
understand that the amount of work you need to perform to use DirectX will be reduced by the introduction of
DirectX 9. However, at the time of this writing, DirectX 9 is still in beta and Microsoft hasn’t provided a
release date for it.

If you plan on working with DirectX in your applications, it’s time to explore further. This book hasn’t
covered a lot of areas that you’ll need to learn before you can write professional−quality DirectX applications.
For example, we haven’t discussed much of the math behind DirectX even though DirectX is a
math−intensive development environment. We also haven’t discussed the art that goes into DirectX
development—three chapters in a book aren’t enough to cover such broad issues. You need to learn more
about the general use of DirectX.

Congratulations, you’ve finished the chapters in the book. However, you’re not finished yet. There are still

Where Do You Go from Here?

385

two appendices to view, a glossary to use, and an Extras folder on the CD to exploit. In short, even though the
text is finished, there are still more avenues to explore before you can say that you’ve learned everything this
book has to offer.

Where Do You Go from Here?

386

Part V: Appendices
Appendix A: Fifty−Two Tips for Error−Free Win32 API Access
Appendix B: Fixes for Common API Access Errors

387

Appendix A: Fifty−Two Tips for Error−Free Win32 API
Access
We all like the little bits of information that say a lot in a short space, especially when working with complex
ideas or concepts. These tips are especially worthwhile because they often represent hours of work. They will
help you create a better environment in which to access the Win32 API. Many of them are significant and
show the hours of work required for discovery; others are subtle suggestions exposed in a moment of clear
thinking. A few of the tips simply consist of good−to−know information of the common−sense variety. No
matter the source, there’s one tip for each week of the year. The tips are presented in no apparent order and
you can skip around when reading them if you like.

When working with enumerations, it’s usually best to create a single enumeration that contains all
possible values for a situation rather than create many custom enumerations for each call that requires
a portion of the entire enumeration. The use of custom enumerations leads to confusion on the part of
other developers and increases the work required to use the Win32 API, without much benefit to the
originator.

1.

Verify the type of variable that a handle or other pointer requires. In most cases, you’ll use an IntPtr
to represent a handle or other pointer. However, some pointers (especially handles) use a structure
instead. In this case, use the data structure. The biggest clue to look for is the use of macros when
declaring the handle or other pointer. Macros generally signal the use of a data structure or other
non−IntPtr form of variable.

2.

Always free unmanaged memory that you allocate using any of the methods we have discussed
throughout the book. This includes memory allocated using the Marshal.AllocHGlobal() function.
Failure to free memory that you allocate outside of Garbage Collector control will create a memory
leak because the Garbage Collector only works with managed resources.

3.

The [MarshalAs] attribute represents one of the most flexible ways to create an interface between
managed and unmanaged data. Generally, you’ll use the [MarshalAs] attribute more often with Visual
Basic than you will with C#, but both languages require this feature for certain types of data
transmission such as COM interfaces and Char arrays.

4.

Sometimes the specific name of a Win32 API function will remain elusive—you remember what the
function does but can’t quite remember the function name so you can look it up in the Platform SDK
documentation. When this happens, you can use the Search feature of the Platform SDK
documentation to look up the function name. Unfortunately, Microsoft’s search mechanism isn’t
known for it’s ability to locate all of the information pertaining to a subject, so it often pays to
perform the same search using a search engine like Google
(http://www.google.com/advanced_search). In addition, you can perform searches using specific
keywords in the Platform SDK documentation index. For example, many functions come in a Get or a
Write form. Looking through the list of entries in these areas of the documentation might help you
locate a function that eludes other forms of search.

5.

You can use either an enumeration or a class as a container for a list of variable values. When using a
class, declare the individual members as public const with a variable type. The class method offers
better control over the enumeration member types; an enumeration is more memory efficient.

6.

Use .NET Framework data types whenever possible. This technique avoids conflicts with native
language data types and makes the code more portable. In addition, some languages, such as Visual
Basic, benefit from using the .NET Framework data types.

7.

Make sure you perform the correct bit−level manipulations when working with flags. In most cases,
you’ll want to create an enumeration that contains the various flag bit locations and then and the flag
with the enumeration value. Flags generally require use of an if statement to ensure that the
application reacts to them properly.

8.

388

Avoid excessive data−manipulation−oriented Win32 API code by using built−in .NET Framework
functionality. For example, you can obtain the handle for the current object by using the this.Handle
property.

9.

Spy++ can provide you with valuable information about the manner in which Windows interacts with
an application. For example, you can use Spy++ to determine the actual value for a window handle
and use this value to check the output of any functions used by your application. Spy++ also helps
you with message handling needs and can tell you about the threads used by your application.

10.

Visual Basic doesn’t provide support for pointers. Consequently, when you need to use pointers in
your application, the best option is to use Visual C++ to write a wrapper DLL. When speed and use of
a single language is most important, find a way around using the point (such as an IntPtr) or rely on
C# as your development language.

11.

Watch out for the variable in disguise. Some variables look like one type in the Platform SDK when
they’re really another type in the C/C++ header files. If you’re unfamiliar with a variable type listed
in the documentation, it always pays to research it and verify that it actually is a specific variable type.

12.

Normally, there’s no way to implement a union within managed data structures. Generally, you have
to create one version of the data structure for each member of the union. However, you can get around
this requirement by ensuring that you understand which form of the data structure your application
will use—implementing only the form of the data structure that your application needs will help avoid
confusion on the part of other developers.

13.

Make sure you understand all features of the [DllImport] attribute. This is a versatile attribute that is
the main tool used to create linkage between the managed environment and any unmanaged DLLs
that you want to use. It’s also important to understand the limitations for the current [DllImport]
attribute implementation. For example, you can’t use it to make calls to a DLL that uses the FastCall
calling convention.

14.

Always rely on vendor documentation when working with hardware DLLs. In many cases, the vendor
will provide special functions to access special hardware features. The vendor might also require data
in a format different from the standard Windows input for that call or provide multiple forms of the
same function.

15.

Look for inconsistencies in the Win32 API call syntax when debugging your application. For
example, some calls return an HRESULT value, some a Boolean value, others a numeric value, and
still others an object such as a handle. Failure to detect these differences can cause errors in your
application code, even if the Win32 API call succeeds.

16.

Some functionality requires clever programming techniques rather than difficult programming
techniques. For example, you can give your applications a Windows XP appearance by creating a
manifest file rather than writing the drawing code directly. Of course, there’s no free lunch. Many
clever programming techniques have limitations that you need to consider. In the case of a manifest
file, it affects only the Windows−drawn controls and won’t affect owner−drawn controls.

17.

Spend time learning about the System.Runtime.InteropServices namespace. This namespace contains
a wealth of classes and attributes you can use to make access to both the Win32 API and COM much
easier.

18.

You can use the Win32 API FormatMessage() function to interpret the numeric output of the
Marshal.GetHRForLastWin32Error() method, the Marshal.GetLastWin32Error() method, or the
GetLastError() function.

19.

Use the PostMessage() function when you want to send a message and have the call return
immediately. Likewise, use the SendMessage() function when you want the message to complete
before the function returns.

20.

Windows always creates a set of environmental strings for your application. In most cases, the strings
will include path information. The strings could also include information about the user and the
computer system. Reading and adding to these strings is always acceptable, but avoid modifying the
strings if possible.

21.

Appendix A: Fifty−Two Tips for Error−Free Win32 API Access

389

Always use events to handle Windows messages and delegates to provide support for callback
functions. The main reason you want to use events to handle Windows messages is to allow someone
inheriting from your code to access the message without worrying about the details of the Windows
message.

22.

Use the .NET Framework to implement required functionality whenever possible, even when the
method for accessing the required .NET Framework function is arcane. For example, many
developers will forget that they can access all of the features of other .NET languages using the
Interaction class. Making Win32 API calls is error prone and causes performance degradation, but it’s
the only way to accomplish some tasks.

23.

One alternative to using the FormatMessage() function to interpret an error code is to use the Error
Lookup utility. This utility accepts a number as input and an optional DLL where the associated error
messages are found and outputs the human−readable error message.

24.

Beware of threading problems when working with the Win32 API. Always be sure that any
modifications to the data in the main window are made by functions in the main thread. The same
holds true for any other graphic element—always make sure that your application handles them in a
thread−safe manner.

25.

The WM_SYSCOMMAND message is one of the more flexible messages offered by the Win32 API.
It helps the developer to perform tasks such as manipulate windows and turn on the screensaver.

26.

Make sure you check the version of Windows running on the host system whenever you attempt to
use version−specific features. Older versions of Windows don’t support the rich set of features found
in newer versions. In many cases, they don’t support essentials, such as full security, either. When in
doubt, check the Windows version of the host to ensure that you have full access to the desired
feature.

27.

To provide cues for other developers when a Win32 API function argument will accept an
enumeration value, use the enum name as the argument type. In this case, however, you’ll need to
ensure that the enumeration provides the correct data type for the Win32 API call or the function may
fail to work as anticipated.

28.

Always implement data structures fully. Even if a shortened form of the data structure will work for
the current project, it’s likely that you’ll need the data structure in the future. In addition, you can’t be
sure of side effects that will occur when using an incomplete version of the data structure. Sometimes
Windows will use reserved or unused data members for specific purposes (such as the storage of
pointers and handles).

29.

Don’t assume that all undefined flag values constitute an error. There are four possible reasons for an
undefined flag value. First, the flag value could be incorrect, in which case you should display an
error message. Second, the host could support an undocumented flag value that’s designed for that
version of Windows. Third, the undefined value could mean that the call failed. Fourth, an undefined
flag value could be the correct output given some environmental or application condition. The call
might produce multiple outputs, one or more of which include an undefined flag value.

30.

Windows provides a means for creating your own custom messages. Always use the
_RegisterWindowMessage() function to register a unique name for your custom message.

31.

Make sure you use role−based and token−based security appropriately in your applications. Each
form of security has a specific purpose in the Windows environment. Role−based security is better
suited to distributed applications and situations in which you need to know what type of user is
accessing an application and associated data. Token−based security works better in situations in
which you need to maintain strict control and information about the user.

32.

Avoid using unsafe code whenever possible. Any code that relies on the use of manual pointers (*
symbol) or addresses (& symbol) is unsafe code. Only C# supports this method of working with the
Win32 API. Unsafe code blocks double the potential for problems with the Win32 API call because
the compiler and runtime both reduce the number of checks they make. Of course, there are situations
in which you can’t avoid using pointers unless you want to create a wrapper DLL using Visual C++
(an effort that comes with its own set of problems). Generally, you can avoid using pointers by

33.

Appendix A: Fifty−Two Tips for Error−Free Win32 API Access

390

relying on the out and ref keywords and using IntPtr variables.
Use the in and out designations in the Platform SDK documentation to determine the flow of data
between your application and the unmanaged environment. Variables marked as [in] are normally
passed by value. You’ll use a reference (the ref keyword in C#) for variables marked as [in, out].
Finally, variables marked as [out] are normally passed in an uninitialized state using the out keyword
or the [out] attribute.

34.

The Platform SDK generally lists a C/C++ library as the source of a Win32 API call. In most cases,
there’s a corresponding DLL that the .NET developer will rely on to access the function. However, in
some cases, the function only appears in the C/C++ library. Whenever this problem occurs, you’ll
need to use a wrapper DLL to access the function.

35.

The serial and parallel ports are examples of hardware that provide standardized access under
Windows. However, if you want to access specific devices, you’ll need access to a third−party library
and its accompanying documentation.

36.

Use multiple overrides of the same Win32 API function to create certain effects. For example, if you
want the ability to assign a null value to a structure, you need one version of the function call with the
structure in place and a second version with an IntPtr substituted for the structure.

37.

Make sure you understand the use of special−purpose messaging functions. For example, it’s essential
to know the purpose of the PostThreadMessage() function if you want to manipulate threads directly.

38.

Windows uses a message pump to deliver and process messages. There are literally thousands of
Windows messages that you can use to communicate with your own application as well as other
applications executing on the system. Make sure you spend time learning about the various messages
and message classes that the Win32 API provides.

39.

Most developers consider the GetLastError() function unsafe for use in the managed environment
because CLR could have made another Win32 API call in the interim. Always use the
Marshal.GetHRForLastWin32Error() method or the Marshal.GetLastWin32Error() method for
maximum compatibility.

40.

Always use a String for one−way text data transfers. Using a String is more efficient than creating a
StringBuilder object. In addition, CLR has to perform less marshaling of the data value.

41.

Always use a StringBuilder object when the Win32 API call is expecting a text buffer into which it
will write data. A StringBuilder is more resource and processor intensive, but CLR can change the
value of a StringBuilder, while the value in a String remains constant.

42.

At least a few of the Win32 API calls you want to make will require the use of a Visual C++ wrapper
DLL. Make sure you include Windows.H as part of STDAFX.H to make sure the Visual C++ wrapper
DLL will work correctly. In addition, you must include certain #defines to ensure that the compiler
will enable advanced Windows features.

43.

Always verify that the message function you want to use is still viable. For example, the
PostAppMessage() function has been replaced by the PostThreadMessage() function. Using the wrong
function in your application can cause errors if newer versions of Windows don’t support the replaced
function.

44.

Look for hidden .NET Framework functions to help resolve Win32 API call problems. For example,
one of the most common graphics calls is GetDC(). This function will work in most, but not all, cases
with a .NET application. In many cases, you can use the .NET Framework CreateGraphics() function
to obtain the graphical presentation for the object in question and then use the GetHdc() function to
obtain a handle to the device context.

45.

One reason to use a Win32 API call instead of the built−in .NET Framework functionality is that the
Win32 API provides extended functionality. For example, the .NET Framework emulates the
functionality provided by the MessageBox() function. Using the MessageBoxEx() function provide
access to the Help button, among other features.

46.

If you’re unsure about the name of a function within a DLL, use the Dependency Walker utility to
check it. The Dependency Walker utility can also help you determine the ordinal number of a function
and the number of functions with similar names. In many cases, a DLL will contain multiple versions

47.

Appendix A: Fifty−Two Tips for Error−Free Win32 API Access

391

of the same function to handle data in different ways. The most common difference between functions
is that some use Unicode characters and some use ANSI characters.
Not all flags are single−bit values. Some flags consume two or more bits within the variable returned
by a Win32 API call. In this case, you’ll need to set up special handling for the flag value and could
find that transferring the flag value to another variable is well worth the effort. The most important
task is to determine the proper reaction to each flag value and to ignore undefined flag values.

48.

Although there’s no requirement to use the [StructLayout] attribute, using it can help you obtain better
results when creating data structures. The LayoutKind enumeration helps determine the final data
presentation to the Win32 API call. In addition, you can use the CharSet, Pack, and Size fields to
ensure that the output of the structure is acceptable. The Size field is especially useful when you want
to ensure that the Win32 API sees a structure of a specific size.

49.

Never use your old Visual Basic Win32 API function declarations within the managed environment.
Microsoft has changed how Visual Basic works. Consequently, the older code will cause problems in
the newer .NET applications.

50.

Macros present one of the harder elements of the Win32 API to convert to the managed environment.
In many cases, you can use a constant value to represent the macro. Some macros will require the
construction of bit−manipulating functions. Finally, a few macros actually create other data elements,
such as structures. When you find such a macro, determine what type of data element it creates and
then define the data element directly.

51.

When all else fails, read the Platform SDK documentation. Reading about the function now saves a
considerable amount of debugging time later

52.

Appendix A: Fifty−Two Tips for Error−Free Win32 API Access

392

Appendix B: Fixes for Common API Access Errors
It’s always going to be hard to create applications that use more than one system for making calls, obtaining
system resources, and performing other tasks. No matter how well you build the bridge between the two
technologies, there are going to be problems in translating calls and data from one technology to the other. For
this reason, there is some risk in using the interoperability techniques found in this book. No matter how
closely you follow the examples, there are going to be times where the Win32 API throws a monkey wrench
in your plans and makes it difficult to obtain a desired effect in your application.

This appendix provides some fixes for the most common Win32 API access errors based on personal
experience and the experiences of other developers on the various .NET newsgroups. While these sections
may not fix every error that you have accessing the Win32 API, they’ll at least give you some ideas of where
to look for answers. Even a hint of where to look when you’re scratching your head late at night is better than
no information at all. However, I’d also like to provide updates to this appendix on my Web site. If you see a
problem that doesn’t appear in this appendix (or anywhere else in the book) and you think that other
developers are also seeing this problem, feel free to write me about it at JMueller@mwt.net. When you write,
please include a short description of the problem, some sample code if possible, and your suggested fix for the
problem.

Resolving Data Corruption in Data Structures

Several areas of the book have mentioned the fact that managed data and unmanaged data are essentially
incompatible. Whenever you pass data from the managed environment to the unmanaged environment, the
Common Language Runtime (CLR) marshals the data for you—it converts the data as needed for the two
technologies. Generally, CLR does a good job of translating the data for you assuming you provide the correct
data as input. In some cases, CLR needs a little help translating the data, so you can use the [MarshalAs]
attribute to tell CLR how to marshal the data. For example, you might need to tell CLR to marshal data as a
wide (Unicode) string instead of an ANSI string in some cases.

Most developers figure out how to use the [MarshalAs] attribute with functions because the feedback is
immediate. In fact, Windows will often tell you that the data is in the incorrect format as an error code.
However, Windows doesn’t provide such feedback with data structures. In many cases, the developer has no
idea that the data is in the wrong format or suffers corruption during transit. Consequently, debugging this
problem can be particularly troublesome.

The first place to look for errors is the structure header definition. Make sure you include the required
arguments in the [StructLayout] attribute. Many developers forget to tell CLR which character set to use or
how to pack the data structure. Both of these omissions can cause serious damage to your data because CLR
makes certain assumptions about the data based on the call you make and the host operating system.

The second place to look is the data fields within the structure. This is where the [MarshalAs] attribute comes
into play. Read the Platform SDK documentation carefully to look for clues about the data in the structure.
Remember that in many examples in the book you discovered inconsistencies in the Win32 API
implementation and how to learn about those inconsistencies in the documentation. If the Platform SDK
documentation doesn’t provide the required information, try looking through the C/C++ header files. Often
the header files contain fixes that don’t appear in the documentation. Finally, look online for example code,
advice from fellow newsgroup members, and Microsoft Knowledge Base articles about the topic. All of these
sources can help you track down a need to marshal data in a certain way when using data structures.

393

The [DllImport] Attribute Works Improperly

Most of the Win32 API calls that you’ll make use standard calling conventions. In many situations, you can
use the [DllImport] attribute with just the name of the DLL you want to use—the compiler will find the rest of
the required information based on your function declaration. However, as you’ve seen in many of the
examples in the book, you sometimes need to specify the proper character set using the CharSet field because
the DLL in question has more than one implementation of the same function. We’ve also seen how to use the
SetLastError field to retrieve any error information the DLL can provide.

Unfortunately, sometimes using the basic fields won’t make the function work properly. For example, older C
DLLs often use alternative calling conventions. You can get around this problem by using the
CallingConvention field. This field tells CLR which calling convention to use. An associated enumeration
contains options for the following calling conventions:

CDECL•
FastCall•
StdCall•
ThisCall•
WinApi•

This WinApi option is the default setting and the one you should use in most cases. It tells CLR to use the
StdCall convention when an application runs on standard Windows (the callee cleans the stack) and CDECL
when the application runs on Windows CE (the caller cleans the stack). Even though the enumeration contains
an option for the FastCall convention, this version of the .NET Framework doesn’t support it. In other words,
you might be out of luck calling certain types of DLLs using the [DllImport] attribute for now, but Microsoft
is planning on resolving this issue in the future.

In at least a few cases, you’ll need to specify an entry point to the DLL using the EntryPoint field. This field
helps resolve problems with DLL versus common naming of functions. It also helps you choose a specific
function when Windows might choose another form of the function based on the platform (ANSI versus
Unicode character support is one instance). Sometimes you’ll need to use an ordinal value in place of a string
to ensure that you get the correct function number. One of the mistakes that developers make is forgetting to
add a pound sign to the ordinal value. For example, you’d need to specify an ordinal value as shown here:

[DllImport("WinMM.DLL", EntryPoint="#188")]
public static extern Int32 waveOutGetDevCaps(IntPtr uDeviceID,
 ref WAVEOUTCAPS pwoc,
 UInt32 cbwoc);

This form of the [DllImport] attribute ensures that the function calls the waveOutGetDevCapsW() function
and not the waveOutGetDevCapsA() function. The first form is the Unicode version normally used on
Windows NT, Windows 2000, and Windows XP. The second form is normally used on Windows 9x
machines. The important thing to remember is that without the # sign, CLR would look for the 188() function,
which doesn’t exist in WinMM.DLL.

Data Transfer Problems

Transferring data between the managed and unmanaged environment is problematic because you’re
essentially working with two different data management systems. Most developers will find that the .NET

The [DllImport] Attribute Works Improperly

394

Framework provides great variable support for common values such as integers, but that things get a little
weird when you start working with arrays and handles. COM presents more than a few challenges because
you need to work with interfaces, function pointers, and objects. In sum, it’s amazing that data transfer works
at all between the managed and unmanaged environments because there are so many differences between
them. Fortunately, the [MarshalAs] attribute can handle most of the problems—at least if you know how to
use the various attribute features correctly.

Throughout the book, we’ve looked at various [MarshalAs] attribute features. The most common feature is
using the UnmanagedType enumeration to select the correct unmanaged data type. However, this enumeration
contains more than a few data types and it’s easy to choose the wrong one. In many cases, the compiler will
happily compile the application to use a data type that’s obviously incompatible with the function or method
that the application wants to call. Consequently, the first place to look for problems in your code when data
transfer problems occur is the data type selected for marshaling purposes. For example, if you’re working with
a COM interface and are passing an interface pointer using an IntPtr variable, you need to marshal the
interface using the UnmanagedType.Interface enumeration member. Of course, you might also need to choose
a specific type of COM pointer, such as the UnmanagedType.IDispatch or UnmanagedType.IUnknown
enumeration member.

It’s also important to look at the various fields you can add to the [MarshalAs] attribute. For example, we’ve
used the SizeConst field to help marshal Char array variables. Using this field saves untold grief in getting the
managed environment to work with the unmanaged array. Of course, it’s not always correct to even pass an
array. In more than one situation, we created the effect of a fixed length array by passing the correct number
of variables of the anticipated type. No, it doesn’t look as clean as using an array, but the technique still
works.

One of the more interesting field values is MarshalCookie. This field isn’t strictly necessary. For example, we
passed cookies in the MMC example for the book without using it. However, adding the MarshalCookie field
does provide additional information to the marshaler and can reduce problems in a multithreaded
environment, where the need to obtain a particular instance of the object is important.

Despite the power of the [MarshalAs] attribute, there are times when you’ll need to construct a Visual C++
wrapper DLL to perform the required conversion or at least create a conversion routine of your own. Looking
again at the MMC example, there isn’t any way to marshal an icon so that it’s the correct size and color depth.
This is the type of data conversion that you need to perform using a custom routine. The fact that the need for
the data routine is essentially hidden makes it even more important to research the data requirements of the
recipient first. Nowhere in the documentation does it tell you that you’ll need to translate .NET icons to use
them with MMC. The MMC documentation was created long before .NET appeared on the scene, and MMC
is one of the features that Microsoft decided not to support, so there isn’t any documentation on the topic. If
you try the [MarshalAs] attribute and find the support lacking, it’s time to don your detective hat and perform
a little research on the data requirements for your application. In many cases, you’ll find that you overlooked a
[MarshalAs] attribute feature or need to write a custom translation routine.

Sometimes a data transfer problem is one of misinterpretation. The .NET documentation isn’t clear about
when you should use a String versus a StringBuilder, so it’s easy to create a variable of the wrong type and
attempt to pass it to the Win32 API function. In some cases, even running the application won’t produce any
type of error message that you can use as a starting point for your detective work. When this occurs, you need
to look at the data requirements for the Win32 API call closely and then match those requirements to the .NET
Framework variable types. A String cannot change, so it’s not a good candidate for use as a buffer. On the
other hand, a StringBuilder can change, and developers often use it to improve application performance for
that reason. Consequently, a StringBuilder is the correct choice when you need to pass a buffer to a Win32
API call rather than to a constant text value.

The [DllImport] Attribute Works Improperly

395

It’s also important to use the [StructLayout] attribute as needed in your applications. Sometimes the managed
environment will experience problems in creating a structure that matches the Win32 API function or COM
method requirements. In this case, you can use the Size field to ensure that the structure is an appropriate size.
Using the CharSet field ensures that the function will receive string variables of the correct size. You can also
use the LayoutKind.Explicit setting to set the size and location of individual fields within the data structure.

.NET Implementation of COM Interface Doesn’t Work

We discussed this particular problem lightly in the COM areas of the book, but it requires a second look.
Many developers will look at the .NET Framework documentation and see that it supports an interface such as
IDataObject. Because many COM applications rely on the IDataObject interface, many developers will fall
into this particular trap. The general rule of thumb to follow is that the .NET Framework has a complete lack
of COM interface support. If you see an interface with a name you need in the .NET Framework, it’s likely
that the interface simply has the same name, not the same support as the COM counterpart. In general, you’ll
need to research the interface to see if the COM and the .NET Framework version are the same.

This brings up another potential problem—which is one of creating classes derived from the interface. Some
developers have also experienced a problem where they described an interface implementation, derived from
the interface, and created all of the required methods within the class only to find that the class doesn’t work
as anticipated (or even compile in some situations). In some cases, the compiler might become confused when
it sees two interfaces with the same name and use the wrong one to compile the application. Generally, use
full name qualification in the class definition when there’s a potential for confusion.

Sometimes a developer can become fixated on the anticipated solution to a problem and overlook an obvious
answer—I certainly know that I have. There’s a chance that you’ll implement an interface that also appears in
the .NET Framework, find that it doesn’t work, and try a number of solutions to resolve the problem—all of
which are based on the idea that the problem is one of .NET versus COM implementation. In some cases, the
problem is one of implementation. If you’ve tried every other method of resolving the conflict with COM,
look again at the interface definition to ensure that you’ve created it correctly. Pay particular attention to data
types because many developers run into this problem. Make sure you use the [MarshalAs] attribute as needed
to ensure that the interface reflects the COM version. (See the section "Data Transfer Problems" for more
details.)

Handling Memory Leaks and Other Resource Problems

Some developers are under the impression that .NET applications can’t leak memory and will never have
problems with resources because the Garbage Collector handles all of these problems. The fact is that
management of unmanaged memory or resources always falls on the developer. The Garbage Collector will
only manage memory and resources that it knows about—that it was involved in allocating on behalf of the
application. Because of the amount of misinformation on various Web sites and newsgroups, many developers
will fall into this trap. The result is that you might see more memory and resource problems, not less—at least
until developers fully understand how .NET memory management works.

Of course, the main .NET Framework class for working with unmanaged memory and other resources is
Marshal. The AllocCoTaskMem() and AllocHGlobal() functions are the main methods for allocating memory.
Any memory you allocate within your application requires deallocation by the appropriate function, which is
FreeCoTaskMem() and FreeHGlobal() in most cases. The only exception to this rule is if the Win32 API call

.NET Implementation of COM Interface Doesn’t Work

396

frees the memory for you. The clue that the Win32 API function frees the memory for you is that you’ll see an
exception from CLR when the application tries to free the memory. If you see an error message, check the
Platform SDK documentation to ensure that the function you called frees the memory—the documentation
normally contains this information.

The same process that you use for memory is also used for resources. Any resource that you access using a
.NET Framework call must also be freed using a .NET Framework call. However, in this case, you must
always free the resource. None of the Win32 API calls will free the resource for you. If you see an error
message when you attempt to free the resource, it usually means that there’s some problem with your code or
that you never gained access to the resource in the first place (in which case, you’ll see other errors).

Make sure you always use the proper pointer functions for moving data between environments. For example,
the PtrToStructure() function will create a structure based on the date pointed at by a pointer. Likewise, the
StructureToPtr() function accepts a structure as input and creates a pointer to it. You must allocate the
unmanaged memory to create the pointer before calling the StructureToPtr() function and deallocate the
memory when the application is done using it.

The problem with memory and resource leaks is subtler than many developers realize. For example, any time
a Win32 API function or a COM method returns data that your application doesn’t allocate, you need to
consider whether your application will have to free the memory used by that data. Visual C++ developers will
remember using the LocalFree() function to free memory allocated by applications. If you use a function call
that requires use of LocalFree(), then you’ll need to gain access to that function through the Win32 API
because the .NET Framework doesn’t provide support for it. The same holds true for any resources that you
allocate using a Win32 API call. Make sure you use the proper Win32 API call to free the resource when the
application is done using it.

Windows Doesn’t Appear to Handle Messages Correctly

Above all, Windows relies on messages to perform a multitude of tasks. There’s a message for just about
every task you can imagine. The problem is the overwhelming number of messages that developers have to
consider when creating an application. In some cases, several messages have similar functionality, making it
difficult to locate just the right message to accomplish a given task. For example, when you read the
descriptions of the WM_ACTIVATE and WM_ACTIVATEAPP messages, it might be hard to figure out
which message to use.

Some messages are meant to work in a sequence, so you must send more than one message to complete the
task. For example, the WM_LBUTTONDOWN is always followed by the WM_LBUTTONUP message.
Otherwise, Windows assumes that the user always has the left mouse button down and will perform a
continuous drag operation. Of course, one cycle of a WM_LBUTTONDOWN and WM_LBUTTONUP
message is a click. Some developers might think that they should use a double sequence for a double−click,
but Windows requires use of the special WM_LBUTTONDBLCLK message instead.

Another point of confusion is the message itself. The documentation for many messages discusses an
LPARAM and a WPARAM value. Some developers will attempt to send numeric information for these two
arguments in all cases, but that won’t work in either the managed or the unmanaged environment. Sometimes
these arguments contain pointers to other objects, such as a data structure. To send the message, you must
create the data structure and fill it with information first. In short, make sure you understand the requirements
for using the message—especially the content of the two parameters associated with the message.

Windows Doesn’t Appear to Handle Messages Correctly

397

Choosing the correct message function is also a concern. Many of the message functions are easy to identify,
but many developers have a problem figuring out when to use the SendMessage() function versus the
PostMessage() function. The SendMessage() function waits until an action initiated by a message completes.
It’s important to use this function when your application has to wait for the task to complete before it begins
the next task. Timing and synchronization are important no matter what application environment you use. The
Win32 API provides the various message functions to help synchronize application activities.

A final concern for message processing is ensuring that your application actually handles the message in
question. Managed applications don’t handle many of the Windows messages, which means you’ll have to
provide code for handling them. Remember to override the WndProc() function to add your own message
handling code to the application. In addition, remember to call the base.WndProc() function to ensure that
your application handles all of the default messages as well.

Windows Doesn’t Appear to Handle Messages Correctly

398

Glossary

A

Accelerated Graphics Port (AGP)
A special PC bus used specifically for display adapters. An AGP−based display adapter can operate at
much higher speeds than the normal ISA or PCI bus will allow. What this means to the user is that
display speeds are much higher. In addition to making the display adapter faster, AGP also allows the
adapter to directly access main memory as if it were part of the adapter’s private memory storage.
This in turn allows the display adapter to store more complex objects like textures, which are used to
improve display appearance.

access control entry (ACE)
Defines the object rights for a single user or group. Every ACE has a header that defines its type, size,
and flags. Next comes an access mask that defines the rights a user or group has to the object. Finally,
there’s an entry for the user’s or group’s security identifier (SID).

access control list (ACL)
Part of the Windows NT security API used to determine both access and monitoring properties for an
object. Each ACL contains one or more ACEs (access control entries) that define the security
properties for an individual or group. There are two major ACL groups: SACL (Security Access
Control List) and DACL (Discretionary Access Control List). The SACL controls the Windows NT
auditing feature. The DACL controls access to the object.

access token
A definition of the rights that a service or resource requestor has to the operating system. This is the
data structure that tells the security system what rights a user has to access a particular object. The
object’s access requirements are contained in a security descriptor. In short, the security descriptor is
the lock and the access token is the key.

ACE
See access control entry.

ACL
See access control list.

ACM
See Audio Compression Manager.

Adaptive Differential Pulse Code Modulation (ADPCM)
A data encoding technique used for sound systems. Unlike some encoding techniques, ADPCM
supports compression. Sound cards normally provide encoding and compression functionality in
hardware. In most cases, the sound card will support several standardized compression levels and a
few custom compression levels. In addition, the sound card can usually perform data encoding and
decoding without compression.

ADPCM
See Adaptive Differential Pulse Code Modulation.

AGP
See Accelerated Graphics Port.

American National Standards Institute (ANSI)
An organization dedicated to creating standard implementations of common technologies. For
example, this group created the American Standard Code for Information Interchange (ASCII)
character standard commonly used for application development.

American Standard Code for Information Interchange (ASCII)
A standard method of equating the numeric representations available in a computer to
human−readable form. The number 32 represents a space, for example. The standard ASCII code
contains 128 characters (7 bits). The extended ASCII code uses 8 bits for 256 characters. Display

399

adapters from the same machine type usually use the same upper 128 characters. Printers, however,
might reserve these upper 128 characters for nonstandard characters. Many Epson printers use them
for the italic representations of the lower 128 characters, however.

ANSI
See American National Standards Institute.

API
See application programming interface.

application programming interface (API)
A method of defining a standard set of function calls and other interface elements. It usually defines
the interface between a high−level language and the lower−level elements used by a device driver or
operating system. The ultimate goal is to provide some type of service to an application that requires
access to the operating system or device feature set.

argument
A value you pass to a procedure or function. The procedure or function recognizes the value as a
parameter. Values can include objects, pointers, and data structures as well as standard data.

array
A free−form structure that acts much like a database with a single field. An array lets you randomly or
sequentially access each element by number.

ASCII
See American Standard Code for Information Interchange.

asynchronous message handling
A method of sending a message in which the message handler acts upon the message data in the
background and the calling thread proceeds immediately to the next processing step.

AT command
The text representation of an interactive request sent to the firmware of a modem using application
software. Many of these commands are standardized. For example, the ATDT command tells the
modem to dial the number that follows the command when it detects a dial tone. The AT command
set also includes instructions for testing and configuring the modem. Most modems also include
specialized instructions that work only with that vendor’s hardware and firmware.

Audio Compression Manager (ACM)
The Windows element that provides mapping between audio devices and the drivers that support
them. For example, this is the element that would intercept device open function calls and determine
which device to access. The ACM also controls CODECs, format converters, and filters.

B

Background Intelligent Transfer Service (BITS)
A specialized background data transfer technology that enables an application to continue transferring
data without restarting even if the system experiences a loss of connection or reboots. The transfer
continues wherever it left off before the disruption.

bit block transfer (blit)
The process of moving a bitmap from one device context to another. For example, a blit occurs when
an application moves a bitmap from memory to the display. The blit occurs as a continuous operation.
Some applications and function calls will also modify the bitmap during a blit. For example, a
function could find all occurrences of the color red and change them to green during the blit. A blit
could also change the bitmap’s location on screen, providing an animation effect. Some sources use
the shorter blt version of this term.

bitmap
A file or OLE object containing the binary representation of a graphic image in raster format. Each

B

400

pixel on the display is represented as one entry in the file. The size of the entry depends on the
number of colors the image supports. Common sizes include monochrome (1 bit), VGA (4 bits),
SVGA (8 bits), and true color (24 bits).

BITS
See Background Intelligent Transfer Service.

blit
See bit block transfer.

buffer
The area in memory where program variables or other data is stored. For example, applications will
normally read more than one page from a word−processed document to improve performance. The
applications store pages in addition to the one currently viewed by the user in the buffer until needed.

C

callback function
A specialized piece of code that handles data requested by another thread in the same application from
an external source, such as the operating system. For example, when an application requests a list of
processes from Windows, Windows returns the data to a predefined callback function in the
background. The address of the callback function is supplied by the requestor to the external source as
part of the request.

CLR
See Common Language Runtime.

CODEC
See coder/decoder and compression/ decompression.

coder/decoder (CODEC)
A driver, hardware device, or application that encodes and decodes data of various types. The
encoding process places the data in standard packages that allow easier and faster transmission. The
decoding process returns the data to its original format for presentation. This term most often refers to
a hardware CODEC. It is also associated with telecommunications or the transmission of data rather
than localized handling and storage of data.

COM
See Component Object Model.

Common Language Runtime (CLR)
The engine used to interpret managed applications within the .NET Framework. All Visual Studio
.NET languages that produce managed applications can use the same runtime engine. The major
advantages of this approach include extensibility (you can add other languages) and reduced code size
(you don’t need a separate runtime for each language).

Component Object Model (COM)
A Microsoft specification for an object−oriented code and data encapsulation method and transference
technique. It’s the basis for technologies such as OLE (object linking and embedding) and ActiveX
(the replacement name for OCXs—an object− oriented code library technology). COM is limited to
local connections. DCOM (Distributed Component Object Model) is the technology used to allow
data transfers and the use of OCXs within the Internet environment.

compression/decompression (CODEC)
An application, device driver, or piece of hardware used to compress or decompress data in various
formats. This term is most often associated with media data such as sound or video. In general, this
term refers to software more often than it does hardware. Most hardware CODECs are used for
coding/decoding, not compression/ decompression, although some hardware has both functions built
into one unit.

C

401

console
The generic term for a workstation used to monitor server status information. In most cases, the
workstation and server are the same device. Most people associate consoles with a character mode
interface, but this isn’t a requirement.

cookie
One or more special files used by an Internet browser to store site−specific settings or other
information specific to Web pages. The purpose of this file is to store the value of one or more
variables so that the Web page can restore them the next time the user visits a site. A webmaster
always saves and restores the cookie as part of some Web page programming task using a
programming language such as JavaScript, Java, VBScript, or CGI. In most cases, this is the only file
that a webmaster can access on the client site’s hard drive. The cookie could appear in one or more
files anywhere on the hard drive, depending on the browser currently in use. Microsoft Internet
Explorer uses one file for each site storing a cookie and places them in the Cookies folder that
normally appears under the main Windows directory. Netscape Navigator uses a single file named
COOKIE.TXT to store all of the cookies from all sites. This file normally appears in the main
Navigator folder.

cracker
A hacker (computer expert) who uses their skills for misdeeds on computer systems where they have
little or no authorized access. A cracker normally possesses specialty software that allows easier
access to the target network. In most cases, crackers require extensive amounts of time to break the
security for a system before they can enter it.

D

DAC
See digital−to−analog converter.

DACL
See Discretionary Access Control List.

data structure
A specialized development object that contains one or more data elements in a particular format and
order. A data structure can mix data types and can rely on a specific memory layout for use. Data
structures can contain other data structures or objects in a nested format. Some data structures allow
use of multiple data types to represent a single data element. For example, C developers will see
unions within a data structure that allow the data structure to accept multiple data types for that
element. Some data structures also allow unnamed substructures. Many application languages view
data structures as a specialized form of class with specific limitations. In general, a data structure
contains variables only and never contains code.

database management system (DBMS)
A method for storing and retrieving data based on tables, forms, queries, reports, fields, and other data
elements. Each field represents a specific piece of data, such as an employee’s last name. Records are
made up of one or more fields. Each record is one complete entry in a table. A table contains one type
of data, such as the names and addresses of all the employees in a company. It’s composed of records
(rows) and fields (columns), just like the tables you see in books. A database may contain one or more
related tables. It may include a list of employees in one table, for example, and the pay records for
each of those employees in a second table.

DBCS
See Double−Byte Character Set.

DBMS
See database management system.

D

402

DCB
See Device Control Block.

DDK
See driver development kit.

Device Control Block (DCB)
A structure used to create an interface between an application and a device. In most cases, the DCB
contains pointers to configuration information in the application’s data area. DCBs allow the
programmer to request information about the device or to change its current status. Some devices also
provide a method for retrieving data using a DCB.

digital−to−analog converter (DAC)
The element of a display adapter responsible for converting the digital representation of a picture
element (pixel) into a voltage used to present the pixel on a display device. The continuous
conversion of digital pixels to voltages creates a wave representative of the analog signal.

DirectX Media Object (DMO)
A COM object that processes data located in a client−supplied buffer. DirectX commonly uses a
DMO for special effects. For example, a DMO could add a reverberation effect to sound data.

Discretionary Access Control List (DACL)
A Windows security component. The DACL controls access to an object. You can assign both groups
and individual users to a specific object.

DLL
See dynamic link library.

DMO
See DirectX Media Object.

Double−Byte Character Set (DBCS)
A non−ASCII method of formatting characters that requires two bytes for each character instead of
one. The DBCS allows an application to display words using character sets from
non−English−speaking countries.

driver
A special operating system file that allows some presentation graphic programs to send data to an
output device. (See also device driver.)

driver development kit (DDK)
A special set of libraries, include files, source code, and utility programs designed to augment the
native capabilities of a programming language product. A programmer normally writes driver
software to allow applications or the operating system to communicate with the underlying hardware
in some way. A DDK is designed to make the development of such software easier. You’ll find that
most drivers are written to run at the operating system level, so the associated DDK provides utility
programs that also operate at that level.

dynamic link library (DLL)
A specific form of application code loaded into memory by request. It’s not executable by itself. A
DLL does contain one or more discrete routines that an application may use to provide specific
features. For example, a DLL could provide a common set of file dialogs used to access information
on the hard drive. More than one application can use the functions provided by a DLL, reducing
overall memory requirements when more than one application is running.

E

EIDE drive
See extended integrated device electronics drive.

enumeration

E

403

(1) The act of listing the content of a list, data structure, array, or other object containing multiple data
elements. (2) A special data structure that contains a list of recognized data element values that an
application can use for verification purposes. (3) A list of acceptable data element values that appears
within an integrated development environment (IDE) or other application in the form of help.

event handler
A special method or function that reacts to specific system or user events such as clicking a button on
a form or the loss of focus for a textbox.

extended integrated device electronics drive (EIDE drive)
A hard disk drive that uses the extended integrated device electronics (EIDE) interface. All the
components needed to use and access the drive are located on the drive itself. A cable connects the
drive to a host adapter, which connects the drive to the PC bus. The main difference between the IDE
and EIDE interface is that the EIDE interface uses a wider data bus and provides more bandwidth.
The EIDE interface also includes reliability and other specialized features not found in the IDE
interface.

F

filter
An application, piece of hardware, or driver that accepts raw data as input, processes it in some way,
and then outputs it as a finished product. Filters perform a variety of tasks, including data translation,
enhancement, and reduction. For example, a sound filter that changes PCM data into ADPCM data
performs data translation. Another sound filter could perform data enhancement by adding a
reverberation effect. A third sound filter could control the intensity of the sound by performing data
reduction.

G

GDI
See graphical device interface.

GIF
See Graphics Interchange Format.

graphical user interface (GUI)
(1) A method of displaying information where presentation and content both depend on the hardware
capabilities and software instructions provided by the underlying system. A GUI uses the graphics
capability of a display adapter to improve communication between the computer and its user. Using a
GUI involves a large investment in both programming and hardware resources. (2) A system of icons
and graphic images that replace the character mode menu system used by many machines. The GUI
can ride on top of another operating system (like DOS and Unix) or reside as part of the operating
system itself (like OS/2 and Windows). Advantages of a GUI are ease of use and high−resolution
graphics. Disadvantages consist of higher workstation hardware requirements and lower performance
over a similar system using a character mode interface.

graphical device interface (GDI)
One of several components in the Windows operating system. The GDI controls the way artistic
graphic elements are presented on screen. Every application must use the API provided by this
component to draw or perform other graphics−related tasks.

Graphics Interchange Format (GIF)
One of two standard file formats used to transfer graphics over the Internet (JPEG is the other). There
are several different standards for this file format, the latest of which is the GIF89a standard you’ll

F

404

find used on most Internet sites. CompuServe originally introduced the GIF standard as a method for
reducing the time required to download a graphic and the impact of any single−bit errors that might
occur. A secondary form of the GIF is the animated GIF. It allows the developer to store several
images within one file. Between each file are one or more control blocks that determine block
boundaries, the display location of the next image in relation to the display area, and other display
features. A browser or other specially designed application will display the graphic images one at a
time in the order in which they appear within the file to create animation effects.

GUI
See graphical user interface.

H

handle
A pointer to a resource allocation. The handle provides a method for the application to “grasp” and
use the resource. Handles are used for a variety of tasks, including gaining access to a window. If an
application wants to allow an external function to manipulate a resource it owns, it usually passes the
resource handle to allow the external function access.

hardware emulation layer (HEL)
The portion of the software that represents all or part of a physical device. The HEL commonly
replaces missing functionality for a display or audio device so that the application can continue to
render the information that relies on the missing device functionality. In most cases, the HEL will use
multiple steps to send data to existing hardware elements in order to create an effect similar to the
actual hardware effect. Generally, using a HEL is slower than using the actual hardware.

HEL
See hardware emulation layer.

HID
See human interface device.

hierarchical
(1) A method of arranging data within a database. Hierarchical databases rely on a node structure
rather than a relational structure. (2) A method of displaying information on screen that relies on an
indeterminate number of nodes connected to a root node. (3) A chart or graph in which the elements
are arranged in ranks. The ranks usually follow an order of simple to complex or higher to lower.

human interface device (HID)
A term that refers to the ergonomic functionality provided by a device or the ability of the device to
create a human−to−computer interface. Generally, a HID provides additional input about the support
it provides and could include special functionality. An application must provide special programming
to make use of the HID features. General technologies such as DirectX normally treat all devices
equally. For example, a mouse is always a mouse when used with DirectX, even if it does include
HID features.

I

ICM
See Image Color Manager.

IDE
See integrated development environment.

IDE drive
See integrated device electronics drive.

H

405

ILDASM
See Intermediate Language Disassembler.

IMA
See Interactive Multimedia Association.

Image Color Manager (ICM)
A special graphics subsystem component that converts the colors produced by one device so that
they’re compatible with those available on another device. The result is that the output of both devices
doesn’t show the normal variations in color that some program applications currently produce.

integrated development environment (IDE)
A programming language front end that provides all the tools you need to write an application through
a single editor. Older DOS programming language products provided several utilities, one for each of
the main programming tasks. Most (if not all) Windows programming languages provide some kind
of IDE support.

integrated device electronics drive (IDE drive)
A hard disk drive that uses the integrated device electronics (IDE) interface. All the components
needed to use and access the drive are located on the drive itself. A cable connects the drive to a host
adapter, which connects the drive to the PC bus. Early IDE devices included hard drives only. Newer
IDE devices include tape and CD−ROM drives as well.

Intermediate Language Disassembler
(ILDASM) A utility that enables a developer to examine code within a .NET assembly. The
disassembler shows the intermediate language (IL) code created by a compiler and interpreted by the
Common Language Runtime (CLR). A developer can also use this utility to create a text file
containing the IL code within the assembly.

Interactive Multimedia Association (IMA)
A standards body responsible for defining multimedia standards on the Internet. One of the more
important efforts of this standards body is the Adaptive Differential Pulse Code Modulation
(ADPCM) standard, which is used for the serial wave driver in Windows 95.

L

LCD
See liquid crystal display.

liquid crystal display (LCD)
The electronic presentation device used by most laptop computers, handheld devices, cellular
telephones, and other portable electronics. The LCD is flat and doesn’t rely on tube technology in the
way that many desktop display devices do. The LCD comes in many different forms and uses various
technologies for presentation. There are both black−and−white and color versions of the LCD. In
most cases, the LCD is a shutter−type technology where the shutters are electronically controlled and
allow light from a source to pass through when open.

locally unique identifier (LUID)
Essentially a pointer to an object, the LUID identifies each process and resources for security
purposes. In other words, even if a user has two copies of precisely the same resource option (like a
document), both copies would have a unique LUID. This method of identification prevents some
types of security access violation under Windows NT.

LUID
See locally unique identifier.

L

406

M

managed code
A .NET programming term that infers that the code runs under the Common Language Runtime
(CLR) and relies on an intermediate language (IL) rather than native code. A managed application
requires less programming effort on the part of the developer and reduces the amount of resource
management the application must perform because the CLR performs the required management
automatically. Many applications do run slower in a managed environment than they would in an
unmanaged environment.

marshal
The act of making data created by one object accessible and acceptable to another object. The act of
marshaling usually includes moving the data from one memory space to another memory space. The
act could also include some type of data conversion. The type of data conversion depends upon the
requirements of both objects and the data types that they support.

marshaler
The application, object, or other entity that performs marshaling between two objects. (See marshal
for an explanation of marshaling.) Many applications define the marshaler by the type of memory it
uses or the threading model it requires. For example, many developers rely on the Visual C++ free
threaded marshaler to perform many data management tasks.

MDI
See multiple document interface.

message handler
A specialized piece of code that accepts input from the message pump for a given message. The
message handler is normally registered with the application so the message pump knows where to
direct the message content. A message handler must accept a specific number of arguments and a
given order as defined by the message. The arguments normally contain message−specific data
required to process the message. Some message handlers can also accept user−defined data in order to
perform specialized data processing.

Microsoft Installer (MSI)
(1) A technique for installing applications within Windows that allows later removal even if the
system configuration has changed. This technique also provides support for additional vendor
information, partial installations, multiple configurations, and installation recovery. (2) A file format
containing instructions for installing Windows applications. The file is actually a database that
contains specialized instructions and data in a specific format that’s read by the Microsoft Installer
application.

Microsoft Management Console (MMC)
A special application that acts as an object container for Windows management objects like
Component Services and Computer Management. The management objects are actually special
components that provide interfaces that allow the user to access them within MMC to maintain and
control the operation of Windows. A developer can create special versions of these objects for
application management or other tasks. Using a single application like MMC helps maintain the same
user interface across all management applications.

Microsoft ZIP (MSZIP)
The specialized file compression technology used by Windows and other Microsoft applications. The
technology relies on functions found in the SetupAPI.DLL file. This new file compression technology
replaces the Lempel−Ziv algorithm used in older versions of Windows.

MIDI
See musical instrument digital interface.

MMC
See Microsoft Management Console.

M

407

mmio
See multimedia input/output.

MMX
See Multimedia Extensions Processor.

modality
The measure of a resource’s responsiveness to external manipulation. For example, the term modality
is applied to windows to indicate whether the window waits for user input before it returns to the
calling application. Most dialog boxes are modal because they wait for a user response before they
allow the user access to the window that created the dialog box. On the other hand, a child window in
a multiple document interface (MDI) application is modeless because it doesn’t wait for specific user
input to end.

Motion Picture Experts Group (MPEG)
A standards group that provides file formats and other specifications in regard to full−motion video
and other types of graphic displays.

MPEG
See Motion Picture Experts Group.

MSI
See Microsoft Installer.

MSZIP
See Microsoft ZIP.

Multimedia Extensions Processor (MMX)
The latest edition of the Intel family of processors includes multimedia−specific commands within the
chip. Instead of multiple commands to perform a multimedia−related task, one command will do. This
version of the chip should boost overall system performance. It should also allow vendors to produce
less−expensive PCs by using less−complex parts in construction.

multimedia input/output (mmio)
Win32 API functions that enable the developer to open, read, write, and close files for use with
multimedia.

multiple document interface (MDI)
A method for displaying more than one document at a time within a parent window. The Program
Manager interface is an example of MDI. You see multiple groups within the Program Manager
window.

multithreaded application
An application that relies on more than one thread of execution to perform a given task. (See
multithreading and thread for additional details.)

multithreading
An operating−system−specific technique for breaking one or more application tasks into multiple
threads of execution. Using this technique allows the operating system to devote more resources to
higher priority tasks, increasing perceived system performance. The programmer must write the
application to take advantage of this operating system feature when available.

musical instrument digital interface (MIDI)
A method for allowing musical instruments to interact with a computer system. There are two
components to MIDI. The hardware component provides a physical connection between a computer
and a musical instrument. The software component provides the means to represent music in digital
format. This includes storage of the information in either an RMI or MID file.

N

NAT

N

408

See network address translation.
network address translation (NAT)

The process of converting a local friendly name for a resource into a global resource identifier. For
example, Windows uses this feature to convert local resource requests into Internet addresses.

NTFS
See Windows NT File System.

P

PDA
See personal digital assistant.

personal digital assistant (PDA)
A very small PC normally used for personal tasks such as taking notes and maintaining an itinerary
during business trips. PDAs normally rely on special operating systems and lack any standard
application support.

PID
See Process Identifier.

pointer
(1) An arrow−shaped object used to show the currently selected menu item. (2) An arrow−shaped
graphic used to show the viewer which object a label identifies.

point−of−view (POV) control
The control found on some joysticks; enables the user to change the perspective of the scene
displayed on screen without using keyboard controls.

POV
See point−of−view (POV) control.

Process Identifier (PID)
A numeric value associated with a process running on a specific machine. Every process has a unique
PID, making it possible to locate a specific process even if there are multiple copies of a single
application running on the machine. The PID is used by a wide variety of monitoring applications. It’s
also used to access an application or as a means of identification when terminating an errant
application.

R

raster operation (ROP)
A description of a scan drawing technique that uses lines to present a graphic element on a device
such as a monitor. Such a device uses scanning techniques for display. The effect of scanning left to
right and top to bottom while drawing lines that create a visual effect is called raster. A raster
operation describes picture slices so the device can present the completed graphic on screen.

resource interchange file format (RIFF)
A specialized FOURCC. This heading tells any application opening the file that this is a standardized
resource file. For example, a WAV file would contain this entry if it used the standard wave file
format.

RIFF
See resource interchange file format.

role−based security
A method for controlling access to an object based on the requestor’s job function within an
organization. In other words, if the requestor has a specific job function (or role), then they’re allowed

P

409

to access the object. This method of maintaining security is an extension of groups. However, unlike
groups, a requestor must perform a specific job function before access is granted. This security
methodology is normally used with COM+ applications.

ROP
See raster operation.

ROT
See Running Object Table.

ROV
A remotely operated vehicle.

Running Object Table (ROT)
A special Component Object Model (COM) table maintained by the operating system. Components
that will allow a client to create a connection to a running instance need to register themselves in the
ROT. There are two levels of registration: strong and weak. The main difference between strong and
weak ROT registrations is that a strong registration will prevent an object from shutting down until all
of the connected clients have also shut down. A weak reference will get shut down automatically once
all strong references to the object are cleared. In most cases, you’ll want to use the default registration
level of weak.

S

SACL
See Security Access Control List.

scalability
A definition of an object’s ability to sustain increases in load. For example, companies often rate
networking systems by their ability to scale from one to many users. Software scalability determines
the ability of the software to run on more than one machine when needed without making it appear
that more than one machine is in use.

SCSI adapter controller
See Small Computer System Interface (SCSI) adapter controller.

SDK
See software development kit.

Security Access Control List (SACL)
One of several specialized access control lists (ACLs) used to maintain object integrity. This list
controls Windows’s auditing feature. Every time a user or group accesses an object and the auditing
feature for that object is turned on, Windows makes an entry in the audit log.

security descriptor
A reference to the level of security assigned to an object. This is the data structure that tells the
security system what rights a user needs to access the object. The user’s rights are contained within an
access token. In short, the security descriptor is the lock and the access token is the key.

security identifier (SID)
The part of a user’s access token that identifies the user throughout the network—it’s like having an
account number. The user token that the SID identifies tells what groups the user belongs to and what
privileges the user has. Each group also has a SID, so the user’s SID contains references to the various
group SIDs that they belongs to, not a complete set of group access rights. You’d normally use the
User Manager utility under Windows NT to change the contents of this access token. You’ll use the
Active Directory Users and Computers console when working with Windows 2000.

serial stream
A method of data transfer where each bit is transmitted using a single bit path. Instead of transmitting
the data in packets, the sender transmits the data continuously. This technique works well in

S

410

applications such as multimedia where the recipient must receive a single continuous data stream and
the size of the stream is unknown or too large for local memory.

SID
See security identifier.

single−threaded application
An application that contains just one thread of execution that begins at the start of the process and
ends with the process. (See thread for additional information.)

Small Computer System Interface (SCSI) adapter controller
A computer interface card that allows you to connect up to seven devices to the computer system. The
current SCSI standard is SCSI−2. Typical SCSI devices include tape drives, hard disk drives, and
CD−ROM drives. SCSI devices typically provide high−transfer rates (10–15MB/s) and access times
(device type dependent).

snap−ins
Component technologies allow one application to serve as a container for multiple subapplications. A
snap−in refers to a component that’s designed to reside within another application. The snap−in
performs one specific task out of all of the tasks that the application as a whole can perform. The
Microsoft Management Console (MMC) is an example of a host application. Network administrators
perform all Windows 2000/XP management tasks using snap−ins designed to work with MMC.

software development kit (SDK)
A special add−on to an operating system or an application that describes how to access its internal
features. For example, an SDK for Windows would show how to create a File Open dialog box.
Programmers use an SDK to learn how to access special Windows components such as OLE.

Sound Retrieval System (SRS)
A fancy term for a sound card and associated circuitry. The SRS interprets digital input and outputs it
as analog sound. It can also accept analog sound and translate it into digital data that the system can
manipulate and store on disk.

spool
The act of placing data in a temporary buffer for processing at a later time. The buffer often appears in
a specific place on a hard drive. In many cases, the application that originates the data doesn’t process
it—a secondary application performs this task in the background. One of the most common examples
of spooling is the data sent by an application to a buffer on disk for processing by a printer
application.

SRS
See Sound Retrieval System.

synchronous message handling
A method of sending a message in which the calling thread waits for the message handler to complete
processing of the message data before allowing the calling thread to resume. The calling thread is
blocked until the message hander returns, which means the application can appear to stop executing.

T

thread
One executable unit within an application. Running an application creates a main thread. One of the
things the main thread does is display a window with a menu. The main thread can also create other
threads. Background printing may appear as a thread, for example. Only 32−bit applications support
threads.

token
The representation of data, an object, database element, programming syntax, or other information
using a code word, phrase, number, or object. For example, in programming, a token could represent a

T

411

statement, punctuation mark, argument, or other syntactical element. Users often receive tokens
describing their rights as part of the security features of an operating system. Networks also use
tokens to control data flow and perform other tasks.

U

Unicode character
A double−byte character used to represent more than the character set used by the English language.
Unicode character sets are standardized by international convention. Advanced operating systems
normally rely on Unicode for enhanced language support and consistent data handling. (Contrast this
character support with that provided by ANSI using the ASCII character set.)

Uniform Resource Locator (URL)
A text representation of a specific location on the Internet. URLs normally include the protocol
(http://, for example), the target location (World Wide Web, or www), the domain or server name
(mycompany), and a domain type (com for commercial). It can also include a hierarchical location
within that Web site. The URL usually specifies a particular file on the Web server, although there are
some situations in which a Web server will use a default filename. For example, asking the browser to
find http://www.mycompany.com would probably display the DEFAULT.HTM file at that location.

uninterruptible power source (UPS)
Usually a combination of an inverter and a battery used to provide power to one or more electrical
devices during a power outage. A UPS normally contains power−sensing circuitry and
surge−suppression modules. Some UPSs provide standby power and a direct connection between the
power source and the protected equipment. Other UPSs use the power source to charge the battery
constantly. The protected equipment always derives its power from the inverter, effectively isolating
the equipment from the power source.

Universal Plug and Play (UPnP)
A specialized form of device communication wherein the device provides information that allows an
operating system to install support for it even if the device isn’t physically attached to the system.
UPnP supports any intelligent device using any network connection. Theoretically, you could write an
application that enables the user’s furnace to send a message to the user stating that the temperature
has dropped below prescribed limits.

Universal Serial Bus (USB)
A form of serial bus that allows multiple external devices to share a single port. This technique
reduces the number of interrupts and port addresses required to service the needs of devices such as
mice and modems.

unmanaged application environment
A native code platform that lacks support for memory management and other features such as a
Garbage Collector. The .NET initiative has made it necessary to differentiate between applications
that support the Win32 API and native code directly from those that use the .NET Framework. An
unmanaged application allocates and deallocates memory itself and doesn’t rely on the Garbage
Collector to perform this task. The advantage is that the developer gains full access to the Win32 API.
The disadvantage is that the approach is error prone and can result in memory allocation errors
(among other problems).

unmanaged code
A .NET programming term for natively compiled code that runs directly under DOS or Windows.
Native code executes without the benefit of the Common Language Runtime (CLR).

UPnP
See Universal Plug and Play.

UPS

U

412

See uninterruptible power source.
URL

See Uniform Resource Locator.
USB

See Universal Serial Bus.

V

variable
An identifier used to point to an area of memory containing a value.

VBI
See Vertical Blanking Interval.

Vertical Blanking Interval (VBI)
The time during which the display doesn’t present any information on screen because the scan line is
moving from the lower right corner to the upper left corner of the display.

VFAT
See Virtual File Allocation Table.

Virtual File Allocation Table (VFAT)
An enhanced method of disk formatting based on the FAT system. It allows for additional
functionality such as long filenames.

W

WAV file
A type of file used to store sound data. The file can hold data in different formats, which include
stereo or monaural, sampling frequency, and sampling size. In addition to data, the file contains
descriptive information that the calling application uses to reconstruct the stored sound.

Web Distributed Authoring and Versioning (WebDAV) protocol
A protocol that allows a developer to publish files or folders to any Web service that provides the
required support. This protocol provides automatic encryption and decryption to keep the data secure,
which also makes the data transfer process transparent.

WebDAV protocol
See Web Distributed Authoring and Versioning protocol.

Windows NT File System (NTFS)
The method of formatting a hard disk drive used by Windows NT/2000/XP. While it provides
significant speed advantages over other formatting techniques, only the Windows NT/2000/XP
operating system and applications designed to work with that operating system can access a drive
formatted using this technique. Windows 2000 uses NTFS5, a version of this file system designed to
provide additional features, like enhanced security. Windows XP uses a newer version of NTFS than
Windows 2000 uses; it provides other improvements such as encrypted file sharing.

Windows Scripting Host (WSH)
The Windows capability to write and execute scripts at the system level. This allows the user to
reduce the number of repetitive tasks required to get applications to work together. A user can use a
script, for example, that scans their hard drive for errors, backs it up, then optimizes it—all without
any work on the user’s part except for the initial script execution. The user may have to perform
additional work if the script encounters an error, but nothing more than the user would normally do.
Scripts can employ one of two default languages, JavaScript or VBScript. The user can also create
scripts via languages like REXX and Perl when working with a third−party add−in product.

V

413

wrapper DLL
A dynamic link library that provides access to Windows or C library functionality that’s inaccessible
from the managed environment. For example, you need a wrapper DLL to create an interface to the
functions found in the MMC.LIB file used by C/C++ applications for MMC snap−in development.

WSH
See Windows Scripting Host.

V

414

List of Figures

Chapter 1: Overcoming Holes in the .NET Framework

Figure 1.1: Using the Allow unsafe code blocks option to enable use of unsafe code in your application.

Chapter 2: Working with Win32 API Data

Figure 2.1: The MessageBoxEx() function provides features you won’t find in MessageBox.Show().
Figure 2.2: The MessageBoxEx() function enables you to add a System menu to your message box.
Figure 2.3: C# makes a distinction between ref and out keywords, which makes using wrapper DLLs possible.
Figure 2.4: Visual Basic Developers will find it difficult to create interfaces in many cases.
Figure 2.5: This example shows that it’s possible to create data structures outside the managed environment.
Figure 2.6: The technique shown in this section overcomes many of the problems Visual Basic has with
pointers.
Figure 2.7: Displaying an embedded bitmap within your .NET application is fine for the managed
environment.
Figure 2.8: The Add Reference dialog box enables you to add custom _references to your application.

Chapter 3: Accessing the Win32 API

Figure 3.1: The output of the example program is simple, but demonstrates token access.
Figure 3.2: A simple change makes Windows XP theme support available to your application.
Figure 3.3: An example of a system error message retrieved using FormatMessage()
Figure 3.4: Choosing the wrong entry point for a DLL can have unanticipated results.
Figure 3.5: Dependency Walker can help you determine what external files your component needs to operate.
Figure 3.6: Managed applications only see the MSCOREE.DLL file and rely on it for everything.
Figure 3.7: To see the imported functions for a managed application, you must view the application in
ILDASM.
Figure 3.8: ILDASM will tell you which DLL the application uses, as well as any implementation details.
Figure 3.9: The Profile Module dialog box configures the profiling feature of the Dependency Walker.
Figure 3.10: Depends will help you monitor the startup activity for any application you create.
Figure 3.11: The System Information dialog box gives you a quick overview of your system.
Figure 3.12: Use Error Lookup to find the text associated with an error number.
Figure 3.13: Spy++ allows you to take your application apart and see it from the Windows perspective.
Figure 3.14: The Window Properties dialog box enables you to learn more about the structure of your
application.
Figure 3.15: The Message Options dialog box enables you to configure Spy++ for message snooping.
Figure 3.16: The Messages tab helps you select the messages that you want to track for a window.
Figure 3.17: The Messages window will display the messages that you choose to monitor for an application.
Figure 3.18: Spy++ will allow you to monitor both threads and processes.

Chapter 4: Processing Windows Messages

415

Figure 4.1: Spy++ provides one of the best ways to graphically see the effects of messages.
Figure 4.2: Spy++ can provide clues on which messages you need to implement.
Figure 4.3: Managed and unmanaged applications both generate the same sequence of messages.
Figure 4.4: The SysCommand example shows how the various system commands work.
Figure 4.5: Every visible control in an application is very likely a window as well.
Figure 4.6: Loading the VisualUI font using the default code displays it in the Font dialog box.
Figure 4.7: The VisualUI font may not have much to offer users, but it can save some drawing time for
developers.
Figure 4.8: The Threads window can be helpful in diagnosing problems with a Win32 API message handler.

Chapter 5: Using Callback Functions

Figure 5.1: The test application shows a complete list of windows for the system.
Figure 5.2: The Object Browser view says it all—libraries make Win32 API calls easy to use.
Figure 5.3: Using the __value keyword changes the presentation of the enumeration in Visual C++.
Figure 5.4: Even though a Visual C++ enumeration requires special handling, the Object Viewer won’t show
it.
Figure 5.5: The example provides information about the language installed on the current machine.

Chapter 6: Gaining Support for the Console Application

Figure 6.1: Changing code pages is relatively easy using Win32 API calls.
Figure 6.2: Use the settings on the Layout tab to change the output from the GetLargestConsoleWindowSize()
function.
Figure 6.3: The example application demonstrates the usefulness of the console mode information.
Figure 6.4: The Environmental Variables dialog box contains a set of system and user strings.
Figure 6.5: Retrieving command−line arguments and environment strings is relatively easy with .NET.
Figure 6.6: Setting environmental strings is easy— just supply a key and a value.
Figure 6.7: The cursor and font example shows just some of what you can do in a console application.
Figure 6.8: Changing the console window title is easy using the Win32 API functions.
Figure 6.9: Moving text around on screen is easy when using the ScrollConsoleScreenBuffer() function.

Chapter 7: Accessing the Hardware Directly

Figure 7.1: Using a FileStream object incorrectly yields error messages.
Figure 7.2: The example _application enables you to check the _status of your modem using AT commands.
Figure 7.3: The example application shows the status of the serial port and attached modem, if any.
Figure 7.4: The level 1 data provides enough feedback for a basic Explorer display.
Figure 7.5: The GetPrinter() level 2 information tells you everything you need to know about the printer.

Chapter 8: Overcoming Security Issues

Figure 8.1: Token−based security relies on ACLs and security descriptors.
Figure 8.2: The Access Control Editor is a generally accessible component.

Chapter 5: Using Callback Functions

416

Figure 8.3: The advanced features of the Access Control Editor provide the administrator with full access
control.
Figure 8.4: The Security Configuration Editor provides a number of standard templates for creating your
security setup.
Figure 8.5: Each of the security templates contains the same security elements.
Figure 8.6: The example application outputs the name, domain, and use for a well−known SID.
Figure 8.7: The example application will tell you who owns a particular file on the hard drive.
Figure 8.8: The example application will output the number of ACEs associated with the test file, as shown
here.

Chapter 9: Accessing Windows XP Special Features

Figure 9.1: he example uses a COM version of the ImageList control in place of the managed version.
Figure 9.2: You’ll add images to the ImageList control using the Properties dialog box.
Figure 9.3: The example application draws a background, some text, and an icon of your choice.
Figure 9.4: Use Spy++ to discover the inner workings of the example application.
Figure 9.5: The message trail tells you what has happened to the window since it was created.
Figure 9.6: An application can contain more than one test suite, but each suite must appear in a separate
class.
Figure 9.7: Use the Show Tests dialog box to select individual tests from a suite.
Figure 9.8: This application contains two errors that the test suite found with ease using simple tests.

Chapter 10: Using Operating System Special Functions

Figure 10.1: The Uninterruptible Power Supply service must be running before this application will work.
Figure 10.2: An incorrectly configured UPS will return odd AC line status information.
Figure 10.3: The example application will tell you the status of the power system.
Figure 10.4: Adding WSH support to your application is easy after you figure out where it’s stored.
Figure 10.5: The Object Browser shows that WSH has a lot to offer as an alternative to the Win32 API.
Figure 10.6: The example application creates a shortcut on the Desktop with the requested comment.
Figure 10.7: The example application provides inputs for most of the InitiateSystemShutdownEx() features.
Figure 10.8: The InitiateSystemShutdownEx() function creates a remote message for the user.
Figure 10.9: The application displays common display characteristics.
Figure 10.10: Typical output from PC−Lint showing application error information
Figure 10.11: PC−Lint doesn’t handle managed code as well as it could.

Chapter 11: Accessing the Media Player

Figure 11.1: The Windows Media Player sports both new looks and updated features.
Figure 11.2: Select the skin that suits your personal preferences.
Figure 11.3: The Windows Media Player helps you find media on your system.
Figure 11.4: Use the Media Library to organize your media selections.
Figure 11.5: The registry provides the device names you need to use with the OpenDriver() function.
Figure 11.6: The device driver will display its configuration dialog box after it receives the
DRV_CONFIGURE message.
Figure 11.7: The example application outputs the device name and version number.

Chapter 9: Accessing Windows XP Special Features

417

Figure 11.8: The application provides a custom dialog box for selecting the WAV file.
Figure 11.9: WAV files differentiate file areas using a FOURCC entry.
Figure 11.10: IconForge helps you create both icons and cursors for your _applications.
Figure 11.11: Some of the special features that IconForge supports are special effects.
Figure 11.12: The IconWrapper utility enables you to add an icon to a file that doesn’t normally accept an
icon.
Figure 11.13: Use IconForge to extract bitmaps, icons, or cursors from executable files.

Chapter 12: Working with Microsoft Management Console

Figure 12.1: The GUIDGen utility enables you to create GUIDs for your _components.
Figure 12.2: MMC consoles pair one or more MMC snap−ins with the MMC container application.
Figure 12.3: Many consoles appear to contain just one control but are actually made of several controls.
Figure 12.4: Some snap−ins provide extended functionality for a stand−alone MMC snap−in.
Figure 12.5: MMC relies on MSC files that store configuration information in XML format.
Figure 12.6: The Add Standalone Snap−in dialog box will contain the example snap−in.
Figure 12.7: The final basic check is to see if your MMC snap−in produces data.

Chapter 13: Creating DirectX Structures and Data Elements

Figure 13.1: The DirectX Diagnostic Tool checks your DirectX installation for problems.
Figure 13.2: Some of the DirectX tabs contain special test buttons you can use to check compatibility.
Figure 13.3: The DirectX Files tab contains a list of the files used to implement DirectX on the host machine.
Figure 13.4: Always use the Dependency Walker to ferret out information about the DirectX DLLs.
Figure 13.5: It’s important to initialize every member of the DDCAPS data _structure.

Chapter 14: Developing DirectX Access Routines

Figure 14.1: The example application enumerates the DirectX−compatible display devices on the host system.
Figure 14.2: The DirectX Caps Viewer tool helps you learn about the DirectX capabilities of your system.
Figure 14.3: Use the DirectX Caps Viewer tool to learn more about the content of various DirectX data
structures.
Figure 14.4: The DirectX Sound elements include hardware, sound effects, and music.
Figure 14.5: Every Windows system will contain a mouse and a keyboard.
Figure 14.6: Connectivity is a requirement for many multimedia applications today.
Figure 14.7: Choose the DirectX 7 for Visual Basic Type Library for this _example.
Figure 14.8: The sample application paints an image on screen within the client area.
Figure 14.9: Use the Edit Header dialog box to change the overall characteristics of the GIF.
Figure 14.10: Use the Palette dialog to modify the method used to handle color in imported graphics.
Figure 14.11: Use the Edit Image dialog box to change the characteristics of an individual cel.
Figure 14.12: The end result is a series of images with control settings.

Chapter 15: Creating Applications with DirectX 8.1

Figure 15.1: The Direct3D tab controls operation of 3D drawing on your system.

Chapter 12: Working with Microsoft Management Console

418

Figure 15.2: The DirectDraw tab augments the information found in the Direct3D tab.
Figure 15.3: The DirectInput tab provides options for controlling which devices generate debug information.
Figure 15.4: The DirectPlay tab lacks some of the features found on the other tabs.
Figure 15.5: GraphEdit begins by creating a standard rendering sequence for your WAV source file.
Figure 15.6: The WavesReverb DMO appears in the DMO Audio Effects folder.
Figure 15.7: The final setup for the test source
Figure 15.8: Select one or more of the tests to run on one or more DMOs.
Figure 15.9: Check the DMOs that you want to test.
Figure 15.10: The output screen will show whether the DMO passed or failed the tests.
Figure 15.11: The Force Feedback Editor helps you create tactile feedback for users of your application.
Figure 15.12: Creating an effect sequence means combining different effects over time.
Figure 15.13: Even simple ramp effects have several properties that modify the tactile feedback the user
receives.
Figure 15.14: A typical device enumeration
Figure 15.15: The DirectX Texture Tool defines images by texture type, size, and color depth.

Chapter 16: Extended DirectX Programming Examples

Figure 16.1: Use the IROTVIEW Windows Application to verify that your application is properly registered.
Figure 16.2: Many media files contain two or more data streams, each of which requires separate processing.
Figure 16.3: Single−stream WAV files require less processing than multiple−stream ASF files.
Figure 16.4: Data management is separate from data parsing in all multimedia files.
Figure 16.5: The Windows Media Audio Decoder filter can help you polish the sound output of an audio
stream.
Figure 16.6: Device filters view the device from the data stream perspective.
Figure 16.7: Even a file filter has settings that you can use to tune the performance of a data stream.
Figure 16.8: XML Notepad shows that you can save all of your GraphEdit data in XML format.
Figure 16.9: The DirectPlay8 Network Simulator creates specific test conditions for an application.
Figure 16.10: You can use the standard or custom settings for test purposes.
Figure 16.11: The MeshView Tool provides features that help you look at a 3D object from all sides.
Figure 16.12: The text form of the X file looks just like C data structure code.
Figure 16.13: The MeshView Tool makes it easy to accurately select a vertex and face.
Figure 16.14: This Face Information dialog box tells you about the selected vertex and face combination.
Figure 16.15: Modifying the three vertices gives the cube a new appearance.
Figure 16.16: The final output of our sample shows the effects of color and texture on a cube.
Figure 16.17: Exercise care when importing COM libraries because you might leave the functions behind.
Figure 16.18: The standard output from the application allows color and texture to interact.
Figure 16.19: A texture−only form of the Box4.X file

Chapter 16: Extended DirectX Programming Examples

419

List of Sidebars

Chapter 2: Working with Win32 API Data

Unmanaged Resources and the Garbage Collector

Chapter 3: Accessing the Win32 API

Hidden Functions

Chapter 8: Overcoming Security Issues

Why Worry About Token−Based Security?
Understanding the Security Descriptor Types
The Importance of Order for Security

Chapter 10: Using Operating System Special Functions

Using the C/C++ Header Files to Your Advantage

Chapter 13: Creating DirectX Structures and Data Elements

Learning More about DirectX

Chapter 15: Creating Applications with DirectX 8.1

DirectX, the Managed Environment, and Performance

420

List of Tables

Chapter 4: Processing Windows Messages

Table 4.1: Common Prefixes for Win32 API Messages

Chapter 8: Overcoming Security Issues

Table 8.1: Common User Access Token Function Overview
Table 8.2: Common SID−Related Function Overview
Table 8.3: Security Descriptor Function Overview

421

List of Listings

Chapter 1: Overcoming Holes in the .NET Framework

Listing 1.1: Creating a Beep in C#
Listing 1.2: Clearing the Screen Requires Multiple Function Calls

Chapter 2: Working with Win32 API Data

Listing 2.1: MessageBoxEx() Example using the [MarshalAs] Attribute
Listing 2.2: A Technique for Creating Data Structures Externally
Listing 2.3: A Test Program for the External Structure

Chapter 3: Accessing the Win32 API

Listing 3.1: Use SendMessage() to Turn the Screensaver On or Off
Listing 3.2: The Visual C++ DLL Code for User Security Access
Listing 3.3: Obtaining the User SID, Domain, and Name
Listing 3.4: Reporting Win32 API Errors Is Relatively Easy Using This Code.

Chapter 4: Processing Windows Messages

Listing 4.1: Using the HWND_BROADCAST Handle to Call All Windows
Listing 4.2: Use the AddFontFileEx() Function to Load Fonts Privately.
Listing 4.3: The Event Code for a Message Handler
Listing 4.4: Always Override the Message Pump to Handle Custom Messages
Listing 4.5: The Event Handler for the Example Is Simple and Fast
Listing 4.6: Using the ExitWindowsEx() Function to Shut Windows Down

Chapter 5: Using Callback Functions

Listing 5.1: Creating the Callback Function
Listing 5.2: Code for Enumerating all Windows or a Single Desktop
Listing 5.3: The DLL Contains All the Win32 API Calls and Returns a Collection
Listing 5.4: The Dialog−Based Application Code Looks Like Any C# Code
Listing 5.5: Macro Wrapper for Locale Conversion
Listing 5.6: Creating a Delegate and Callback Function for EnumCalendarInfoEx()
Listing 5.7: Demonstrating the EnumCalendarInfoEx() Function

Chapter 6: Gaining Support for the Console Application

422

Listing 6.1: An Example of How to Clear the Console Screen
Listing 6.2: Using the Code Page Functions in a Console Application
Listing 6.3: Methods Used to Access Console Mode Information
Listing 6.4: One Method for Obtaining a List of Current Processes
Listing 6.5: Methods of Accessing the Command−line Arguments and Environmental Strings
Listing 6.6: Setting and Changing an Environmental String
Listing 6.7: Examples of How to Use the Cursor and Font Functions
Listing 6.8: Changing and Restoring the Console Window Title
Listing 6.9: Methods for Working with the Console Screen Buffer

Chapter 7: Accessing the Hardware Directly

Listing 7.1: Use the Win32 API CreateFile() Function to Open the Serial Port
Listing 7.2: A Common Port Status Function is GetCommState()
Listing 7.3: The Wrapper Code Performs Most of the Work in this Example
Listing 7.4: Obtaining the Printer Status is a Matter of Choosing an Information Level
Listing 7.5: Data Structures Used for Level 2 GetPrinter() Calls

Chapter 8: Overcoming Security Issues

Listing 8.1: Converting a SID to Human−Readable Form
Listing 8.2: One Technique for Accessing File Security Information
Listing 8.3: Gaining Access to the ACEs Means Reading the ACL

Chapter 9: Accessing Windows XP Special Features

Listing 9.1: The OSVersion Wrapper DLL Performs a Simple Calling Mechanism
Listing 9.2: The Client Application Detects the Operating System Type
Listing 9.3: Using Windows XP Theme Support in an Application
Listing 9.4: One Method for Creating a Balloon ToolTip

Chapter 10: Using Operating System Special Functions

Listing 10.1: Monitoring the Power Status of a System
Listing 10.2: Creating a Shortcut with WSH
Listing 10.3: A Technique to Shut Down a System Remotely
Listing 10.4: Using the GetDeviceCaps() Function

Chapter 11: Accessing the Media Player

Listing 11.1: Displaying a Device Configuration Dialog
Listing 11.2: A Technique for Detecting Wave Device Capabilities
Listing 11.3: Opening a Multimedia File
Listing 11.4: Technique for Playing Wave Data

Chapter 7: Accessing the Hardware Directly

423

Listing 11.5: Pausing and Stopping a File
Listing 11.6: Cleaning Up the Remaining Variables

Chapter 12: Working with Microsoft Management Console

Listing 12.1: An Overview of MMC Functions
Listing 12.2: The Four Basic MMC Interfaces
Listing 12.3: Structures Used by a Basic MMC Snap−In
Listing 12.4: Elements of a Standard About Dialog
Listing 12.5: Defining GetDataHere() for the IDataObject Interface

Chapter 13: Creating DirectX Structures and Data Elements

Listing 13.1: The Managed Version of the DDBLTFX Data Structure
Listing 13.2: Converting the DDCAPS Data Structure Arrays
Listing 13.3: Initializing the DDCAPS Data Structure
Listing 13.4: The DDDEVICEIDENTIFIER2 Data Structure Is Short and Complex

Chapter 14: Developing DirectX Access Routines

Listing 14.1: Defining an IID Constant Value
Listing 14.2: The DirectX Specific Function Declarations
Listing 14.3: Creating DirectX Error Codes
Listing 14.4: DirectX Error Code Listing
Listing 14.5: Callback Function Delegate Declarations
Listing 14.6: Enumerating Devices Using Code
Listing 14.7: Initializing DirectX in the Managed Environment
Listing 14.8: Displaying an Image On Screen
Listing 14.9: Cleaning Up on Application Exit

Chapter 15: Creating Applications with DirectX 8.1

Listing 15.1: Playing a Sound Using DirectSound
Listing 15.2: Enumerating the DirectInput Devices
Listing 15.3: Displaying the Mouse Status

Chapter 16: Extended DirectX Programming Examples

Listing 16.1: Mesh Example Initialization
Listing 16.2: Loading the X File
Listing 16.3: Rendering the Image

Chapter 12: Working with Microsoft Management Console

424

	Table of Contents
	Introduction
	Overview
	Hunting for Treasure
	Hidden Nuggets

	Who Should Read This Book?
	Tools Required
	Conventions Used in This Book
	Icons

	Part I: An Overview of the Win32 API
	Chapter 1: Overcoming Holes in the .NET Framework
	Overview
	Why Access the Win32 API?
	A Case of Missing Functionality
	Win32 Function Types
	Win32 Access Requirements

	Win32 Access for C# Developers
	Understanding the Effects of Unsafe Code
	Understanding the Effects of Pointers
	Advantages for the C# Developer

	Win32 Access for Visual Basic Developers
	Understanding Visual Basic Limitations
	Advantages for the Visual Basic Developer

	Where Do You Go from Here?

	Chapter 2: Working with Win32 API Data
	Overview
	A Short View of Data
	Working with Variables
	Converting Variables to C# Types
	Converting Variables to Visual Basic Types
	Special Rules for COM

	Working with Data Structures
	Working with Pointers
	Working with Enumerations
	Importing Resources
	Understanding .NET Framework Functionality
	Using the IDE Features
	Working with the Win32 API

	Where Do You Go from Here?

	Chapter 3: Accessing the Win32 API
	Overview
	An Overview of the DLLs
	Types of Win32 Access
	Direct DLL Access
	C LIB Access

	A Direct DLL Access Example
	A C LIB Wrappers Access Example
	A C LIB Substitute Functions Example
	Interpreting Error and Result Values
	Helpful Win32 Programming Tools
	Dependency Walker
	Error Lookup
	Spy++

	Where Do You Go from Here?

	Chapter 4: Processing Windows Messages
	Overview
	Understanding the Windows Message Types
	Windows Message Handlers Found in the .NET Framework
	An Overview of Windows Message Functions
	SendMessage()
	PostMessage(), PostThreadMessage, and PostQuitMessage()
	SendNotifyMessage()
	SendMessageCallback()
	GetMessage() and PeekMessage()
	RegisterWindowMessage()

	Creating a Windows Message Handler Example
	Creating the Event
	Creating the Windows Message Loop Override
	Creating the Event Handler
	Demonstrating the Windows Message Handler
	Developing for Thread Safety

	Where Do You Go from Here?

	Chapter 5: Using Callback Functions
	Overview
	What Is a Callback Function?
	Using Callback Functions
	An Overview of Callback Function Prototypes
	Implementing a Callback from the Managed Environment
	Implementing a Callback from a Wrapper DLL

	Enumerating Calendar Information Example
	Creating the Macro Wrapper DLL
	Creating the EnumCalendarInfoEx() Function Code
	Demonstrating the Calendar Enumeration

	Where Do You Go from Here?

	Part II: Fixing Holes in Standard Applications
	Chapter 6: Gaining Support for the Console Application
	Overview
	What Does the .NET Framework Provide?
	Clearing the Screen Example
	Getting Console Information Examples
	Working with Code Pages
	Gaining Access to Console Mode Information
	Working with Processes

	Changing the Environment Examples
	Accessing the Environmental Strings
	Using Cursors and Fonts
	Determining the Console Window Title
	Manipulating the Console Screen Buffer

	Where Do You Go from Here?

	Chapter 7: Accessing the Hardware Directly
	Overview
	When is Direct Access Required?
	Serial Port Access Examples
	Creating a Serial Stream
	Determining the Port Status

	Parallel Port Access Examples
	Creating the Wrapper DLL
	Viewing the First Level of Printer Information
	Viewing the Second Level of Printer Information

	Where Do You Go from Here?

	Chapter 8: Overcoming Security Issues
	Overview
	An Overview of Windows Security
	A Detailed View of the Windows Security API
	An Overview of the Functions

	Using the Access Control Editor
	Using the Security Configuration Editor
	Understanding How .NET Role-Based Security Differs
	Looking Up an Account SID Example
	Using the GetFileSecurity() Function Example
	Working with ACEs Example
	Where Do You Go from Here?

	Part III: Fixing Advanced Win32 API Problems
	Chapter 9: Accessing Windows XP Special Features
	Overview
	What™s New in Windows XP?
	Common Features
	Professional Edition Exclusive Features

	Determining the Operating System Version Example
	Working with Theme Support Example
	Balloon Help Example
	Using NUnit for Automated Testing
	Where Do You Go from Here?

	Chapter 10: Using Operating System Special Functions
	Overview
	Accessing Status and Other Information
	Learning How to Avoid Version Compatibility Problems
	Determining System Power Status Example

	Creating an Application Shortcut Example
	Shutting the System Down Remotely Example
	Obtaining Device Capabilities Example
	File Compression
	Using PC-Lint for C++ Development
	Where Do You Go from Here?

	Chapter 11: Accessing the Media Player
	Overview
	A Quick Overview of the Media Player
	Windows Media Player General Operation
	Internet Content
	Using the Media Library

	Displaying a Configuration Dialog Example
	Playing Sound Files Example
	Determining Device Capabilities
	Opening a File
	Playing a File
	Pausing and Stopping a File
	Required Application Cleanup

	Using IconForge
	Where Do You Go from Here?

	Chapter 12: Working with Microsoft Management Console
	Overview
	Using GUIDGen
	The Case for an MMC Snap-In
	Creating a Wrapper DLL
	Creating an Interface
	Writing the MMC Wrapper DLL

	Developing the MMC Snap-In Example
	Developing an About Dialog
	Working with IDataObject
	Creating IComponent and IComponentData
	Testing the Snap-In within MMC

	Where Do You Go from Here?

	Part IV: Working with DirectX
	Chapter 13: Creating DirectX Structures and Data Elements
	Overview
	Using the DXDIAG Utility
	Learning about DirectX Compatibility
	Viewing the Drivers

	Working with the DirectX Structures
	An Overview of the Data Structures
	Structure Conversion Essentials

	Understanding DirectX Data Pitfalls in the Managed Environment
	Where Do You Go from Here?

	Chapter 14: Developing DirectX Access Routines
	Overview
	Working with DirectX Functions
	DirectDrawCreate() and DirectDrawCreateEx()
	DirectDrawCreateClipper()
	DirectDrawEnumerate() and DirectDrawEnumerateEx()
	Function Declarations
	Function Return Values

	Creating DirectX Callback Function Prototypes
	DDEnumCallback() and DDEnumCallbackEx()
	EnumModesCallback() and EnumModesCallback2()
	EnumSurfacesCallback(), EnumSurfacesCallback2(), and EnumSurfacesCallback7()
	EnumVideoCallback()
	Delegate Declarations

	Working with the DirectX Interfaces and Classes
	Learning the DirectX Capabilities of the Host Machine Example
	Using the DirectDrawEnumerateEx() Function
	Using the DirectX Caps Viewer Tool

	A Simple 2D DirectDraw Example
	Importing the DirectX COM Library
	Writing the Code

	Using the GIF Construction Set
	Using the GIF Construction Set
	Where Do You Go from Here?

	Chapter 15: Creating Applications with DirectX 8.1
	Overview
	An Overview of DirectX 7 and DirectX 8.1 Differences
	Consolidated Objects
	Updated Objects and Features
	An Overview of the Tools

	Using the DirectX Control Panel Application
	Using the DMO Test Utility
	Creating a Test File Using GraphEdit
	Testing the WavesReverb DMO

	A Simple DirectSound Example
	Using the Force Feedback Editor
	A Simple DirectInput Example
	Using the DirectX Texture Tool
	Where Do You Go from Here?

	Chapter 16: Extended DirectX Programming Examples
	Overview
	Using the GraphEdit Utility
	Creating a Connection
	Working with Multiple Streams
	Working with Filters
	Performance Tuning
	Saving the Result

	Using the DirectPlay Network Simulator
	Using the MeshView Tool
	Creating a Mesh
	Adding Color
	Making Other Changes

	Using a Mesh Example
	Initializing the Application
	Loading a Mesh File
	Displaying the Image On Screen
	A Few Words about Output

	Where Do You Go from Here?

	Part V: Appendices
	Appendix A: Fifty-Two Tips for Error-Free Win32 API Access
	Appendix B: Fixes for Common API Access Errors
	Resolving Data Corruption in Data Structures
	The [DllImport] Attribute Works Improperly
	Data Transfer Problems
	.NET Implementation of COM Interface Doesn™t Work
	Handling Memory Leaks and Other Resource Problems
	Windows Doesn™t Appear to Handle Messages Correctly

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

	Lists
	List of Figures
	Chapter 1: Overcoming Holes in the .NET Framework
	Chapter 2: Working with Win32 API Data
	Chapter 3: Accessing the Win32 API
	Chapter 4: Processing Windows Messages
	Chapter 5: Using Callback Functions
	Chapter 6: Gaining Support for the Console Application
	Chapter 7: Accessing the Hardware Directly
	Chapter 8: Overcoming Security Issues
	Chapter 9: Accessing Windows XP Special Features
	Chapter 10: Using Operating System Special Functions
	Chapter 11: Accessing the Media Player
	Chapter 12: Working with Microsoft Management Console
	Chapter 13: Creating DirectX Structures and Data Elements
	Chapter 14: Developing DirectX Access Routines
	Chapter 15: Creating Applications with DirectX 8.1
	Chapter 16: Extended DirectX Programming Examples

	List of Sidebars
	Chapter 2: Working with Win32 API Data
	Chapter 3: Accessing the Win32 API
	Chapter 8: Overcoming Security Issues
	Chapter 10: Using Operating System Special Functions
	Chapter 13: Creating DirectX Structures and Data Elements
	Chapter 15: Creating Applications with DirectX 8.1

	List of Tables
	Chapter 4: Processing Windows Messages
	Chapter 8: Overcoming Security Issues

	List of Listings
	Chapter 1: Overcoming Holes in the .NET Framework
	Chapter 2: Working with Win32 API Data
	Chapter 3: Accessing the Win32 API
	Chapter 4: Processing Windows Messages
	Chapter 5: Using Callback Functions
	Chapter 6: Gaining Support for the Console Application
	Chapter 7: Accessing the Hardware Directly
	Chapter 8: Overcoming Security Issues
	Chapter 9: Accessing Windows XP Special Features
	Chapter 10: Using Operating System Special Functions
	Chapter 11: Accessing the Media Player
	Chapter 12: Working with Microsoft Management Console
	Chapter 13: Creating DirectX Structures and Data Elements
	Chapter 14: Developing DirectX Access Routines
	Chapter 15: Creating Applications with DirectX 8.1
	Chapter 16: Extended DirectX Programming Examples

